Water in High-mass Protostars with Herschel/HIFI: Using H,O line profiles to probe physical conditions

Y. Choi^{1,2,*}, F. F. S. van der Tak^{2,1}, E. F. van Dishoeck^{3,4}, F. Herpin⁵, F. Wyrowski⁶, and the *Herschel*/WISH team

university of groningen

¹Kapteyn Astrophysical Institute, Groningen, The Netherlands ²SRON Netherlands Institute for Space Research, Groningen, The Netherlands ³Leiden Observatory, Leiden, The Netherlands ⁴ Max Planck Institut für Extraterrestrische Physik, Garching, Germany ⁵Université de Bordeaux, Laboratoire d'Astrophysique de Bordeaux; CNRS/INSU, Floirac, France ⁶ Max Planck Institut für Radioastronomie, Bonn, Germany *****Contact : y.choi@astro.rug.nl

ABSTRACT

Massive stars play a major role in the interstellar energy budget and the shaping of the galactic environment. However, the formation of high-mass stars is not well understood for several reasons: they are rare, they have a short evolution time scale, they are born deeply embedded, and they are far from us. The water molecule is thought to be a sensitive tracer of physical conditions and dynamics in starforming regions because of its large abundance variations between hot and cold regions. Therefore, measurement of the water abundance is a step towards understanding the star formation process. We present Herschel/HIFI observations of water lines toward the high-mass protostellar objects to learn about physical processes in these regions and to identify links in the water abundance between the various

evolutionary stages of high-mass star formation. This work is part of the guaranteed time key program Water In Star-forming regions with Herschel (WISH).

 $p-H_20 2_{02}-1_{11}$

987.9 GHz

AFGL2591 d = 3.3 kpc $L_{bol} = 5.8 \times 10^4 L_{\odot}$

and K bands color-J, H, composite image obtained from **Gemini NIRI**

W33A d = 4.0 kpc $L_{bol} = 1.0 \times 10^4 L_{\odot}$ $p-H_2O 1_{11}-O_{00}$

1113.3 GHz

IRAS18089-1732 d = 3.6 kpc $L_{\rm bol} = 3.2 \times 10^4 \, L_{\odot}$ $p-H_2O 1_{11}-O_{00}$ 1113.3 GHz

W₃ IRS₅

d = 2.2 kpc

RESULTS & CONCLUSIONS

 Water detection in 5 high-mass protostars > 11 water lines in W3 IRS5 and AFGL2591 **> 8** water lines in IRAS18089-1732 ➤ 7 water lines in W33A ➢ 5 water lines in IRAS18151-1208 $\cdot p - H_2 O 1_{11} - O_{00}$ (1113.3 GHz) line > emission line only in IRAS18151-1208 > mix of emission and absorption lines in other 4 sources \cdot p-H₂O 2₀₂-1₁₁ (987.9 GHz) emission lines with 2 components in **5** sources > broad component by outflow >narrow component by envelope • No detection of H₂¹⁷O and H₂¹⁸O lines in IRAS18151-1208 > due to optical depth effect • No detection of o-H₂O 3₁₂-3₀₃ (1097.4 GHz) line in W33A > not high temperature region to excite this line Non-LTE models of AFGL 2591 indicate that ➤ a gas density of > 10⁸ cm⁻³, a kinetic temperature of > 150 K for envelope > a gas density of > 10⁷ cm⁻³, a kinetic temperature of > 60 K for outflow

Color-composite image constructed from the F110W, F160W, and F222M of HST/NICMOS

the p-H₂O 1_{11} -O₀₀/p-H₂O 2_{02} - 1_{11} line ratio (bottom) from optically thin emission (N=10¹⁴ cm⁻², *left*) to optically thick emission (N=10¹⁶ cm⁻², *right*) as function of kinetic temperature and H2 density calculated with RADEX (Non-LTE, large velocity gradient code). The yellow and blue areas indicate the observed values of T_{rot} from envelope and outflow, respectively.

-100

-50

 V_{1SP} [km/s]

 Calculate column densities and water abundances Compare o/p ratio and D/H ratio Full radiative transfer analysis (RATRAN) • Analyze the HIFI map data

REFERENCES

• Chavarría et al. 2010, A&A, 521, L37 • Megeath et al. 2005, ApJ, 622, L141 • Rygl et al. 2012, A&A, 539, A79 • van der Tak et al. 2007, A&A, 468, 627 • van Dishoeck et al. 2011, PASP, 123, 138