

Herschel/PACS observations of Class 0/I low-mass young stellar objects

Agata Karska^{1,2}, G. Herczeg¹, E.F. van Dishoeck^{1,2}, L.E. Kristensen², S. Bruderer¹, R. Visser³, S. Wampfler⁴ and WISH team ¹MPE, Garching, Germany ²Sterrewacht Leiden, The Netherlands ³University of Michigan, USA ⁴ETH Zurich, Switzerland

Motivation

♦ We want to address the following questions: how is energy deposited into the envelope of YSOs? Is this energy transferred mainly through mechanical (shocks) or radiative (UV, X-ray heating, disk emission) processes? How does this affect the chemistry?

♦ We present the results of far-IR Herschel/PACS observations of 16 Class O/I YSOs obtained in the Water In Star-forming regions with Hersch (WISH) key program

 \diamondsuit Far-IR region contains main cooling lines of [OI], [CII], CO (up to J=48-47), OH and $\rm H_2O$

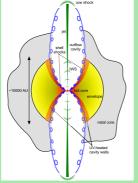
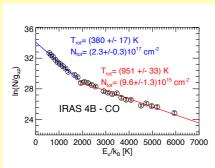
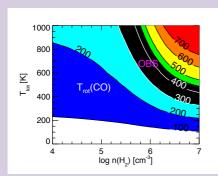



Fig.1. Physical structure of YSO

lras 4B / Pacs Full Scan

Fig.2. Rotational diagram of NGC 1333 IRAS 4B


Full scan observations of the source show two distinct components in CO rotational diagram of T_{rot} =380±17 K for J=14-25 and T_{rot} =951±33 K for J=26-48

♦ Column densities were calculated for emitting area radius of 850 AU and T_{kin}=1000 K (see water modelling of IRAS 4B in Greg Herczeg+ poster!)

♦ Resulting water and CO abundance ratio for IRAS 4B: X(H₂O)/X(CO)≈20

Rotational temperatures

Fig.3. RADEX models vs. observations

 \diamondsuit Plane-parallel slab models for densities log n=4-7 cm⁻³ and T $_{\rm kin}$ =10-1000 K in optically thin regime were calculated for CO J=14-25 using RADEX (van der Tak+07)

♦ Colored contours show rotational temperatures from the models

♦ Black area: results of PACS observations (IRAS 4B: 380 K, SerSMM1: 368 K, SerSMM3: 306 K, L1489: 452 K, IRAS15398: 300 K)

♦ Range of observed "cold" T_{rot} is narrow (300-450 K)

High densities and temperatures are needed to explain the observations

Extended emission

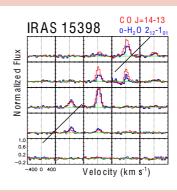
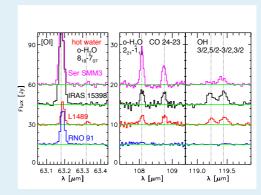



Fig.4. Spectral map of IRAS 15398-3359

- ♦ PACS offers 5x5 spaxels (9.4"x9.4" each) mapping of sources
- ♦ Most objects in our sample show extended emission in CO, H₂O, OH that cannot be attributed to PSF
- ♦ Water is often well-aligned with CO and outflow, but some differences are

Cross-sample line survey

Fig.5. Line survey of Class O/I objects

- ♦ H₂O detected in all objects, but a wide range of intensities correlated with CO
- ♦ No correlation of L_{bol} vs. H₂O and CO

Conclusions

- ♦ H₂O and CO emission is always detected in Class O/I objects and is often extended along outflow, while hot water is detected only in a few sources (see
- S. Wampfler poster for comments about OH emission!)
- ♦ Excitation diagrams show two components; no single shock model can explain both of them; both C-shocks and PDR can play a role (Visser+ 2011)
- \diamondsuit 1D modelling shows that in order to reproduce such T_{rot} high densities and kinetic temperatures are required (log n >5.5 cm $^{-3}$ and T_{kin} >400 K)
- \diamondsuit Water and CO line intensities, contrary to OH, don't seem to depend on L_{bol}

References

- Herczeg, G.+ poster and Wampfler, S.+ poster
- ♦ Visser, R., Kristensen, L.E., Bruderer, S., et al., 2011, A&A, submitted
- ♦ Van der Tak, F.F.S., Black, J.H., Schöier, F.L., et al., 2007, A&A 468, 627-635