

LINKING HIGH-J CO EMISSION FROM LOW- TO HIGH-MASS PROTOSTARS WITH HERSCHIEL-HIFT

I. San José García¹, L.E. Kristensen¹, U.A. Yıldız¹, E.F. van Dishoeck¹², F. van der Tak³, F. Wyrowski⁴, F. Herpin⁵, D. Johnstone⁶, C. McCoey⁷, M. Fich⁷

1. Leiden Observatory, Leiden, The Netherlands. 2. MPE, Garching, Germany. 3. SRON & Kapteyn, Groningen, The Netherlands. 4. MPIfRA, Bonn, Germany. 5. Observatoire de Bordeaux, Bordeaux, France. 6. National Research Council Canada, Victoria, Canada. 7. University of Waterloo, Waterloo, Canada

INTRODUCTION

Many different physical and chemical processes take place during the embedded phase of star formation. Most protostellar studies focus either on low-m or high-mass young stellar objects (YSOs). Therefore, a mass evolutionary trail is still needed. One of the goals of the WISH key program is to use CO and $\rm H_2O$ observations to provide such a trail.

CO as a diagnostic:

- Probes the components of the protostellar environment:
- ²CO: traces the molecular outflow.
- [■]C[®]O: trace the quiescent envelope gas.
- ^BCO: both.

GOAL:

- Constrain the physical and chemical structure of protostellar environments as a function of mass.
- Compare properties of CO and its isotopologue emission lines.
- Provide a reference for H₂O and other molecules.

1) RESULTS: Line profiles

- Decomposition of the ¹²CO (10-9) and ¹³CO (10-9) line profiles in different velocity components:
 - Broad (FWHM > 15 km/s): outflowing gas.
 - **Medium** (FWHM ~5-15 km/s): shocked gas in the inner dense envelope.
 - Narrow (FWHM < 5 km/s): quiescent envelope.

OBSERVATIONS

- ▶ 12 CO 10-9 (E_{u} =304 K), 13 CO 10-9 (E_{u} =291 K) and C 18 O 5-4 (E_{u} =79 K), 9-8 (E_{u} =237 K), 10-9 (E_{u} =290 K) emission lines, observed with HIFI on *Herschel*, for a sample of **26 low-, 6 intermediate- and 19 high-mass YSOs**.
- ♦ All observations performed within the "Water in star-forming regions with Herschel" Key Program.
- ullet Comparison with lower-J transitions observed by ground-based telescopes (JCMT, APEX-CHAMP+).

CONCLUSIONS

- Multiple velocity components identified in the ¹²CO (10-9) and ¹³CO (10-9) spectra.
- Ratio of the width of the different velocity components remarkably constant over the large range of luminosity (from $< 1 L_{\odot}$ to $> 10^4 L_{\odot}$).
- Integrated intensity proportional to $L_{\rm BL}$ for all the CO and isotopologue emission lines across the mass spectrum.
- [□] C^BO (9-8) good tracer of warm (T > 50 K) quiescent gas.

2) RESULTS: Correlations

- Correlation between the integrated intensity, W, and L_{RL}, observed in all
 CO and isotopologue
 lines for all the objects.
- Slope ~ 1:

 W proportional to L_{bd}

Integrated intensity is normalized to a distance of 1 kpc.

Correlation between the ratio of the velocity components for the 12 CO and 13 CO (10-9) spectra and $L_{\rm hd}$.

 $\Delta V_{b}/\Delta V_{n} = FWHM(V_{broader})/FWHM(V_{narrower})$

FUTURE WORK

- Study excitation of components (line ratios).
- Look for correlations with H₂O lines.

References:

1)L.E. Kristensen et al. 2010, A&A, 521 L30 2) U.A. Yıldız et al. 2010, A&A, 521, L40

Spitzer image of Serpens, courtesy of NASA