LINKING HIGH-J CO EMISSION FROM LOW- TO HIGH-MASS PROTOSTARS WITH HERSCHIEL-HIFT I. San José García¹, L.E. Kristensen¹, U.A. Yıldız¹, E.F. van Dishoeck¹², F. van der Tak³, F. Wyrowski⁴, F. Herpin⁵, D. Johnstone⁶, C. McCoey⁷, M. Fich⁷ 1. Leiden Observatory, Leiden, The Netherlands. 2. MPE, Garching, Germany. 3. SRON & Kapteyn, Groningen, The Netherlands. 4. MPIfRA, Bonn, Germany. 5. Observatoire de Bordeaux, Bordeaux, France. 6. National Research Council Canada, Victoria, Canada. 7. University of Waterloo, Waterloo, Canada # INTRODUCTION Many different physical and chemical processes take place during the embedded phase of star formation. Most protostellar studies focus either on low-m or high-mass young stellar objects (YSOs). Therefore, a mass evolutionary trail is still needed. One of the goals of the WISH key program is to use CO and $\rm H_2O$ observations to provide such a trail. #### CO as a diagnostic: - Probes the components of the protostellar environment: - ²CO: traces the molecular outflow. - [■]C[®]O: trace the quiescent envelope gas. - ^BCO: both. #### GOAL: - Constrain the physical and chemical structure of protostellar environments as a function of mass. - Compare properties of CO and its isotopologue emission lines. - Provide a reference for H₂O and other molecules. # 1) RESULTS: Line profiles - Decomposition of the ¹²CO (10-9) and ¹³CO (10-9) line profiles in different velocity components: - Broad (FWHM > 15 km/s): outflowing gas. - **Medium** (FWHM ~5-15 km/s): shocked gas in the inner dense envelope. - Narrow (FWHM < 5 km/s): quiescent envelope. ### **OBSERVATIONS** - ▶ 12 CO 10-9 (E_{u} =304 K), 13 CO 10-9 (E_{u} =291 K) and C 18 O 5-4 (E_{u} =79 K), 9-8 (E_{u} =237 K), 10-9 (E_{u} =290 K) emission lines, observed with HIFI on *Herschel*, for a sample of **26 low-, 6 intermediate- and 19 high-mass YSOs**. - ♦ All observations performed within the "Water in star-forming regions with Herschel" Key Program. - ullet Comparison with lower-J transitions observed by ground-based telescopes (JCMT, APEX-CHAMP+). # CONCLUSIONS - Multiple velocity components identified in the ¹²CO (10-9) and ¹³CO (10-9) spectra. - Ratio of the width of the different velocity components remarkably constant over the large range of luminosity (from $< 1 L_{\odot}$ to $> 10^4 L_{\odot}$). - Integrated intensity proportional to $L_{\rm BL}$ for all the CO and isotopologue emission lines across the mass spectrum. - [□] C^BO (9-8) good tracer of warm (T > 50 K) quiescent gas. # 2) RESULTS: Correlations - Correlation between the integrated intensity, W, and L_{RL}, observed in all CO and isotopologue lines for all the objects. - Slope ~ 1: W proportional to L_{bd} Integrated intensity is normalized to a distance of 1 kpc. Correlation between the ratio of the velocity components for the 12 CO and 13 CO (10-9) spectra and $L_{\rm hd}$. $\Delta V_{b}/\Delta V_{n} = FWHM(V_{broader})/FWHM(V_{narrower})$ ## FUTURE WORK - Study excitation of components (line ratios). - Look for correlations with H₂O lines. References: 1)L.E. Kristensen et al. 2010, A&A, 521 L30 2) U.A. Yıldız et al. 2010, A&A, 521, L40 Spitzer image of Serpens, courtesy of NASA