

<u>B2</u>

.

Similar profiles for all detected lines

Little overlap between SiO and H_2O , with SiO confined in the EHV gas

R4:

- Excitation decreases with velocity Good overlap between SiO and H₂O

R4 & B2:

H₂O and low-J CO trace different gas components A RADEX escape probability analysis (Van der Tak et al. 2007) indicates a warm (T=400-600 K) and dense (n_{H2} ~10⁶-10⁷ cm⁻³) gas (Table 1)

Table 1. Summary of the best-fit models derived for each HIFI compo

R4-HV indicate the low-velocity and high-velocity components in R4, respectively.						
Comp.	Model	<i>o</i> / <i>p</i>	$T_{\rm kin}$	$n(H_2)$	$N(H_2O)$	Θ
			(K)	(cm^{-3})	(cm^{-2})	(arcsec)
R4-LV	LV-1	3	600	107	$2 \ 10^{13}$	37
R4-HV	HV-2	3	650	10^{6}	$4 \ 10^{14}$	13
B2	B2-2	3	450	10 ⁶	5 1014	17

III. The PACS line survey

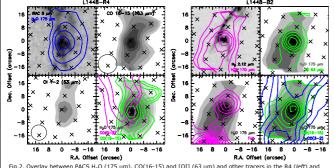


Fig.2. Overlay between PACS H₂O (175 µm), CO(16-15) and [OI] (63 µm) and other tracers in the R4 (*left*) and B2 (*right*) shocked spots in L1448. In particular, JCMT CO(3-2) from Nisini et al. (2012, in prep.), *Spitzer* [FeII] from Neufeld et al. (2009), IRAC 8 µm emission (Tobin et al. 2007, ApJ 659, 1404) and H₂ at 2.12 µm (Davis 8 Smith 1995, ApJ 443, 41) are shown.

- At B2 the peak of the H₂O emission is at the apex of the bow-shock
- No shift is found at this angular resolution between PACS H₂O, CO and [OI] In both shocks, PACS H₂O and CO(16-15) peak at the same position, while there is a shift in respect to CO(3-2): **high-J CO and H₂O trace the same shocked gas**, while low-J CO traces the ambient entrained gas

V. Conclusions

105

106

log₁₀ n(H₂) (cm⁻³)

107

T(K)

N=6 10¹⁶ cm⁻²; Θ=1"

emissior

1500

1000 Ξ

500

104

Strong differences in the line profiles at the two shocked positions (R4 and B2) toward the L1448 outflow, with R4 showing variations in the excitation conditions as a function of velocity The observed emission is consistent with a very dense (n_{H2} ~10⁶-10⁷ cm⁻³) gas with T=400-600 K and moderate H₂O column densities, corresponding to $D(H_{eff})$ ($D(H_{eff})$) and $D(H_{eff})$ ($D(H_{eff})$) ($D(H_{eff$

x² DISTRIBUTION:

cm-2 (Fig.5).

The best fit to the $\rm H_2O$ lines with E_u >190 K confirms that PACS H₂O

emission in B2 traces an additional gas component with respect to HIFI H₂C

observations: a warmer (~ 1000 K), less dense ($\sim 10^5$ cm⁻³) gas with higher column density of a few 10¹⁶

Fig.5, x² distribution at the B2 central spaxel versus T and n_{H2} , considering only PACS lines with E_u>190 K. Contours indicate 1.2×, 2×, 3× χ^2_{min} .

H₂O/H₂~10⁻⁵-10⁻⁶ (see also Vasta et al. 2012)

PACS emission:

- No shift is found between H₂O, CO and [OI] High-J CO and H₂O trace the same shocked gas, while low-J CO traces the ambient entrained gas
- PACS H₂O lines trace an additional gas component, which is warmer (T~1000 K), less dense (~10⁵ cm⁻³) and with higher column density (~ 10^{16} cm⁻²) with respect to the gas traced by HIFI

References:

Davis & Smith 1995, ApJ 443, 41; Giannini et a. 2011, ApJ, 738, 80; Neufeld et al. 2009, ApJ, 706, 170; Nisini et al. 2007, A&A 462, 163; Santangelo et al. 2012, A& 538, A45; Tobin et al. 2007, ApJ 659, 1404; Van der Tak et al. 2007, A&A 468, 2012, A&A, 627-635; Vasta et al. 2012, A&A, 537, A98