

Studying the OH emission from low- and intermediate-mass protostars

Susanne F. Wampfler^{1,2}, S. Bruderer³, G. J. Herczeg^{3,4}, A. Karska³, L. E. Kristensen⁴, E.F. van Dishoeck^{3,4}, J. R. Goicoechea⁵, S. D. Doty⁶, A.O. Benz¹, and the WISH team

¹ Institute for Astronomy, ETH Zurich, Switzerland, wampfler@astro.phys.ethz.ch; ² Centre for Star and Planet Formation, University of Copenhagen, Denmark; ³ Max-Planck-Institut für extraterrestrische Physik, Garching, Germany; ⁴ Kavli Institute for Astronomy and Astrophysics at Peking University, China; ⁵ Leiden Observatory, The Netherlands; ⁶ Centro de Astrobiologia (CSIC/INTA), Madrid, Spain; ⁷ Department of Physics and Astronomy, Denison University, USA

Motivation

OH is a key molecule in the water chemistry of protostars. It is linked to both the formation and destruction of H_2O through $OH + H_2 \longleftrightarrow H_2O + H$. OH is also an important molecular coolant.

Goals

We would like to determine

- the origin of the OH emission
- how the OH molecules are excited (collisions vs. radiative pumping)

- the fractional abundance of OH
- the OH/H2O abundance ratio
- the relative importance of the various water formation and destruction routes

Herschel observations

"Water in Star-Forming Regions with Herschel" (WISH, Pl. E. F. van Dishoeck) key program:

Spatially resolved **PACS** spectroscopy of 13 low-mass class o and I YSOs and 5 intermediate-mass protostars in at least four OH transitions (79, 84, 119, 163 μ m).

HIFI high-resolution spectroscopy of 5 sources to resolve the hyperfine structure of the 163 μm (1834 and 1837 GHz) triplets.

HIFI spectrum of the OH triplet at 1837 GHz from the high-mass protostar W3~IRS 5

OH excitation study (radiative transfer models)

"Slab" model including dust continuum with density, OH and dust column densities, gas and dust temperatures as free parameters.

Main result: radiative pumping dominates at low densities, collisions at higher densities.

Observational results

 \bullet OH level populations can be approximated by a Boltzmann distribution of T \sim 100 K

• OH luminosity is strongly correlated to the bolometric luminosity, potential correlation with outflow force.

• An origin in the outflow is the most likely scenario for the bulk OH emission, as the HIFI spectra are dominated by a broad component. A significant envelope contribution is only observed in high-mass sources.

References

S. Bruderer et al., 2010, A&A 521, L44 S.F. Wampfler et al., 2011, A&A, 531, L16 S.F. Wampfler et al., 2010, A&A 521, L36 E.F. van Dishoeck et al., 2011, PASP 123, 138

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich