First hyperfine structure resolved OH FIR spectrum of a star-forming region

S.F. Wampfler¹, S. Bruderer², L.E. Kristensen³, L. Chavarria^{4,5}, E.A. Bergin⁶, A.O. Benz¹, E F. van Dishoeck^{2,3}, G.J. Herczeg², F. F. S. van der Tak^{7,8}, J. R. Goicoechea⁹, S. D. Doty¹⁰, F. Herpin^{4,5} and the Water in Star-Forming Regions with Herschel (WISH) team

¹ ETH Zurich, ² MPE Garching, ³ Leiden Observatory, ⁴ Université de Bordeaux, ⁵ CNRS/INSU Bordeaux,
⁶ University of Michigan, ⁷ SRON Groningen, ⁸ Kapteyn Institute Groningen, ⁹ CSIC-INTA Madrid, ¹⁰ Denison University

Motivation

 \bullet Water is one of the most abundant molecules in star-forming regions. We study related species to understand formation and destruction routes of $\rm H_2O.$

 \bullet OH is one of the molecules most closely linked to H_2O in the chemical network.

• OH is an important reactant in the oxygen chemistry and a major molecular coolant in star forming regions.

• OH far-IR lines are only observable from space.

Herschel/HIFI results

• We obtained the first velocity resolved hyperfine OH spectrum of the high-mass star-forming region W3 IRS 5 (L \sim 10⁵ L_o, d = 2 kpc) with HIFI.

• The line profile reveals a narrow component, attributed to envelope emission, on top of a broad feature, attributed to outflow emission.

Fig. 2: Velocity resolved OH line triplet at 1837 GHz (163.1 μm) towards W3 IRS 5 observed with HIFI. The blue lines indicate the best fit slab model. Fig. 3: Radiative transfer models of W3 IRS 5 with different OH abundances compared to the envelope component of the observed spectrum.

Derived OH/H₂O abundance ratios in W3 IRS 5: • Envelope $\sim 10^{-3}$ (T ≥ 100 K) consistent with prediction from high-temperature chemistry. • Envelope ~ 1 (T < 100 K) consistent with laboratory

results on photodesorption. • Outflow \geq 0.028 can be explained by fast J-type

• Outflow \geq 0.028 can be explained by fast J-type shock or slower UV irradiated C-type shock.

Herschel/PACS results

• Complementary observations with PACS in six lowand intermed.-mass sources in four OH transitions.

100 A 100 A 10 A

Similar excitation of OH in sources with very different physical properties → emission might arise from gas at similar conditions, likely shocked gas.
Correlation of OH and [OI] fluxes, indicative for a dissociative shock.

• Tentative correlation of the OH line luminosity with the bolometric luminosity, indicative for a correlation with outflow force.

Conclusions & Outlook

• The hyperfine resolved OH spectrum allows us to determine the OH/H_2O abundance ratios. The ratios are consistent with dense-cloud chemistry.

• OH emission observed with PACS agrees with shock interpretation. Additional PACS data obtained in the WISH key program will improve statistics.

- Herschel GT1 program to study OH excitation in detail for one source (observations completed).
- Herschel OT1 proposal to observe additional species (HCO^+, H_3O^+) in the H₂O network with HIFI.

References:

S. Bruderer et al., 2010, A&A 521, L44 M.R. Hogerheijde, F.F.S. van der Tak 2000,

A&A 362, 697

S.F. Wampfler et al., 2011, accepted by A&A, arXiv:1105.5026

S.F. Wampfler et al., 2010, A&A 521, L36 van Dishoeck et al., 2011, PASP 123, 138

Contact information: wampfler@astro.phys.ethz.ch

E IIII Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich