Description and Aim of the Symposium

George K Miley: Always Looking Further


What defines the life of the Dutch-Irish astronomer, George Miley? According to his colleagues, he was always in the right place at the right time, doing the right thing — and it’s true. From his discovery of the most distant object in the universe and his proposal for the new radio telescope, LOFAR, to his fight against the budget cuts as Director of Leiden Observatory and his newest educational programme, Universe Awareness, Miley has always pioneered groundbreaking projects, but not because he wanted to make a career, he says: “I was just working on fun, exciting things. For me, that’s the most important part.

Miley’s interest in physics and astronomy started early in his life, when his father, a lawyer, told him all about the theory of relativity and read to him the science fiction story, ‘War of the Worlds’ by H.G. Wells. After high school, where he was taught no science, he decided to study physics at University College Dublin. After graduating with a BSc in Physics in 1963, he decided that astronomy would be an intriguing field of research. “Radio astronomy was a hot topic at the time, because it offered a new window on the Universe,” Miley says.

Miley therefore chose to do a PhD in radio astronomy in the UK at the University of Manchester, Nuffield Radio Astronomy Laboratories, Jodrell Bank (NRAL). At NRAL a new radio telescope had been completed and was being used to follow the first Russian spacecrafts on their way to the Moon. “These space probes were constantly in the news,” Miley enthuses. “Jodrell Bank was a very exciting environment. We developed long baseline interferometry, an important technique used to measure tiny radio sources at enormous distances, like quasars.”

In the late sixties, Miley worked as a research associate for a couple of years at the National Radio Astronomy Observatory in Charlottesville, USA, where he continued his research on quasars and other radio sources in the Universe. Miley found a relation between the size of quasars and their distance: the smaller the quasar, the further away it is. “We were working with extremely distant objects, billions of light years away that had just been discovered and were helping us to probe the early Universe and its origin,” he says.


While Miley was in USA, the world's newest radio telescope was being built in Westerbork in the Netherlands. Miley, who wanted to use this very important facility, wrote a letter to Jan Oort, a famous Dutch astronomer. Oort was the Director of Leiden Observatory at the time and architect of the Westerbork Synthesis Radio Telescope (WSRT). Miley was hired immediately in a permanent position, without ever meeting Oort. “I had never even been to the Netherlands!” says Miley, still surprised. “This should never have happened, but I’m so happy that I got this chance.”

In the seventies, Miley married his Dutch wife, Hanneke, and made his home in Leiden, which was then the headquarters of ASTRON, the Netherlands Institute for Radio Astronomy, previously known as the Stichting Radiostraling van Zon en Melkweg (SRZM). Together with Professor Harry van der Laan’s research group, Miley used the WSRT extensively to study the sizes and structures of many classes of radio sources, such as radio galaxies — extremely active galaxies that emit large amounts of radio energy. Miley’s observations demonstrated that a black hole often rotates in the centre of these galaxies, working like a nuclear powerhouse that emits energy along jets. Miley expected to not only find interesting radio sources at large distances, but also within our own Milky Way, and he was right. Together with Luc Braes he pinpointed the position of Cygnus X-1, a radio source that was found to be the first observed black hole.

Cosmic Evolution

In 1977, Miley took a sabbatical year at the American Lick Observatory in California. There he moved beyond his own field of work and began exploring optical astronomy. He evolved from a radio astronomer into a ‘multi-wavelength’ astronomer, which was very uncommon at this time. “Until then you usually were a radio astronomer or an optical astronomer,” Miley explains. “But I wanted to combine these different techniques to discover more about the same objects. The invention of digital cameras in the seventies made it easier for radio astronomers to do optical astronomy.” Using the new generation of optical detectors Miley helped develop a new diagnostic tool that used extended optical emission lines for studying the physics of radio galaxies. He discovered that “redder” radio galaxies were extremely faint optical sources, which meant that they were very distant. Later in his career Miley focused on these sources with ‘ultra-steep radio spectra’ to find more and more distant galaxies. For several years Miley and his colleagues held the record for the most distant galaxy discovered.

Miley’s multi-wavelength skills were further expanded in the 80s, when he joined the international science team responsible for IRAS, the Infrared Astronomical Satellite. IRAS was used to complete the first deep infrared map of the sky. Miley then spent six months, at NASA’s Jet Propulsion Laboratory in Pasadena, USA, working on these pioneering IRAS surveys.

Back in Leiden, he used his new knowledge of optical and infrared astronomy to study the physical conditions within radio galaxies and the gas that surrounds them. He did this together with Tim Heckman, then a dynamic young Leiden postdoc and Wil van Breugel, a creative Leiden PhD student. Another of his first students was Peter Barthel, now working as an astronomy professor at the University of Groningen in the Netherlands. Barthel and Miley studied radio structures in the early and late Universe, and they discovered that radio sources in the early universe were more bent than expected and suggested that this was due to interaction with dense gas in the galaxies that hosted the quasars. “Those were exciting times in Leiden, when we were working on cosmic evolution,” Barthel explains. According to Barthel, Miley was a very independent researcher and he also wanted his students to become independent. “He wanted you to discover things for yourself. I found that difficult at first, but it made me a better researcher. I now do the same to my students!”


During Barthel’s PhD, Miley wasn’t around all the time. “Miley is a thrill-seeker,” says Barthel. “He always wants to be in the place where it all happens, where the exciting things are discovered.” That’s why Miley moved to Baltimore (USA) in 1984 with his wife Hanneke and two daughters, Helen and Anna. There he worked at the Space Science Telescope Institute, where he hoped to observe with Hubble, but that was delayed due to the Challenger disaster in 1986. Regardless, he continued working in Baltimore for four years, as the Head of Academic Affairs and began his optical research on high redshift radio galaxies.

In 1988, Miley returned to Leiden permanently and was appointed a professorship. His research on distant radio galaxies continued and Miley remains very excited talking about this time. “Radio galaxies are fantastic objects. I worked with a lot of excellent people, including Huub Röttgering, the current scientific director of Leiden Observatory.” They showed that luminous radio galaxies can lead the way to finding the first galaxy clusters, ‘cosmic cities of galaxies’ that formed in the Early Universe. “Miley’s multi-spectral knowledge and enthusiasm was again appreciated,” says Röttgering, who completed his PhD in 1993 under Miley’s supervision. “Miley had so many ideas and always had a good overview of what had to be done and where we had to go with our research,” Röttgering says. “He thought about new opportunities like no-one else, which always brought us to the right place at the right moment.”


Miley was the Scientific Director of Leiden Observatory from 1995 to 2003. While he was still only acting Director, he fought fiercely against the faculty plans that were based purely on education without taking any account of research. In his words, “Astronomy was an outstanding research department, but because it had relatively few undergraduates, it was very vulnerable for cuts.” Miley therefore wrote a letter to the Faculty Board, questioning the assumptions of the Faculty Plan. He pointed out that the department had already been cut drastically over the previous decades. “I stated that it would be better to close the Observatory completely than make it any smaller. Luckily they didn’t, as a new supportive Faculty Dean was appointed,” says Miley. Since then, Leiden Observatory has grown to become one of the largest and most productive astronomy departments in Europe.

But Miley was always looking further. While he was a member of the board of the ASTRON foundation, he was looking for a way to boost radio astronomy in the Netherlands and Europe. In 1997, he wrote a proposal for a new radio telescope that would look even further into the early Universe, which he called the Low Frequency Array (LOFAR) — it succeeded. In 2006, ASTRON started to build LOFAR, which consists of 7000 small antennas, situated in the north of the Netherlands and four more European countries. “It’s fantastic that it has become a reality now and that it is actually being built. The project has become much more ambitious than my original plan. I’m a bit proud, I have to confess,” says Miley joyfully. He is now part of various LOFAR observation programmes.

In 2003, Miley was awarded one of the first distinguished academy professorships by the Royal Netherlands Academy of Arts and Sciences (KNAW). He used this time to work further on his research on protoclusters, groups of galaxies that begin to form clusters around distant radio galaxies. He has also supervised more than 25 PhD theses since 1978.

Astronomy for Development

Besides research, Miley used his time as a KNAW-professor to ‘stick his neck out’ in developing a new education programme for young, disadvantaged children, called Universe Awareness (UNAWE). The idea — to inspire very young kids with astronomy — had already occurred to him much earlier, when he went to his daughters’ primary school to tell kids about the Universe. “I saw how excited kids become when you tell them about the Universe,” Miley says. “But astronomy is not only suitable to show them the fun parts of science, it also gives them perspective and it stimulates global citizenship and tolerance. Fanaticism and nationalism are put into perspective when you show young children how small our world is compared to the Universe.” UNAWE has grown into a worldwide programme, funded by the European Union and is now active in more than 50 countries, where it inspires children from 4 to 10 years old with the wonders of our Universe.

Since the foundation of UNAWE, Miley’s career has taken a turn. As UNAWE was starting up in 2006, he was appointed Vice-President of the International Astronomical Union (IAU). As vice-president, he designed the IAU strategic plan ‘Astronomy for Development’, which advocates the use of the technological and educational aspects of astronomy to stimulate technological and human capacity building throughout the world. Miley is responsible for overseeing the implementation of this strategic plan until 2015 and he talks about this with a lot of passion. “During my youth I was a political left-wing. I’m therefore particularly happy that I can now, in addition to doing pure research, help contribute more directly to society. Astronomy is linked to cutting-edge technologies, fundamental science and the most profound culture, so it can be a unique tool for development throughout the world. Several countries, such as South Africa and China, have acknowledged this during the last few years.”


Miley now travels all around the world for projects such as UNAWE and the IAU, to get in contact with people and give talks. He also wants to continue working with LOFAR, to find more distant radio galaxies that can give us insight in to the history of the Universe. “Astronomers are actually super historians,” he says. “We write the history of the Universe all the way back to the Big Bang. The most fascinating aspect of astronomy for me is that it provides us with perspective and wonder.”

Miley, now 71 years old, is not thinking about retiring. “As long as I can make myself useful, I will continue working,” he says. “There is so much work yet to be done, I can’t picture myself just sitting at home!” One of his dreams is that UNAWE will continue to expand and will obtain structural funding. “Working on development can never be finished. There are so many children in the world whose talents and potential are currently being wasted,” he says. “We must try to motivate these children and give them the idea that there’s more to the world than their own village or ghetto.


Short CV George K. Miley (1942), Astronomer

1959–1963 BSc Physics, University College Dublin, Ireland

1963–1968 PhD Radio astronomy, University of Manchester, UK

1968–1970 Research Associate and Assistant Scientist, National Radio Astronomy Observatory, USA

1970–1988 Senior Scientist, Leiden Observatory, the Netherlands

1977–1978 Visiting Professor, Lick Observatory, USA

1981–1982 Visiting Scientist, IRAS, Jet Propulsion Laboratory, USA

1984–1988 Senior astronomer & Head Academic Affairs, Space Telescope Science Institute, USA and Adjunct Professor, John Hopkins University, USA

1988–1996 Astronomy Professor, Leiden University, the Netherlands

1996–2003 Scientific Director, Leiden Observatory, the Netherlands

2003–2008 Royal Netherlands Academy of Arts and Sciences Professor, Leiden University, the Netherlands

2008–recent Astronomy Professor, Leiden University, the Netherlands

Author:I. Nijman/EU Universe Awareness