Class 2: Sizing, Weighing, and Ageing Stars

2019 Oort Graduate Lectures Conny Aerts@Leiden University, NL

dit: NASA

KULEUVEN Rotation? Convection? Mixing?

Life determined by uncalibrated interior physics

KU LEUVEN Lots of open ? in stellar physics

Stellar evolution = tested from *surface properties* while life directed by *stellar interior*

Connection between life of host star and its exoplanets?

Stellar versus dynamical evolution of our Milky Way?

3D Mode Properties

Perturb spherically symmetric equilibrium model

time → frequency (period) of mode geometry → spherical harmonic + radial order

 $\xi(r,\theta,\phi,t) = \left[(\xi_{r,nl}e_r + \xi_{h,nl}\nabla_h) Y_l^m(\theta,\phi) \right] \exp(-i\omega t)$

Inferences of properties of stellar interiors via modes

a) requires frequencies & identification of (1,m) of as many modes as possible from data, where the frequency precision is ~(1/total time base)

b) can only probe regions where modes are propagative

Asteroseismic Modelling

KULEUVEN Asymptotics: high/low frequencies

 $M < 1 \ M_{\odot} \qquad \qquad 1 \ M_{\odot} < M < 2 \ M_{\odot} \qquad \qquad M > 2 \ M_{\odot}$

Major unknowns: M_{core} (r,t) & D_{mix} (r,t) & Ω_{rot} (r,t) extent & shape of convective boundary mixing? microscopic & macroscopic envelope mixing?

Radboud Universiteit Nijmegen

(Exoplanet host) stars: mass & magnetism

Dopplermap of the Sun

KU LEUVEN

The Sun oscillates in thousands of non-radial p-modes with periods of ~5 minutes: modes visible from resolved surface

The Dopplermaps give integrated velocities of the order of some cm/s

KU LEUVEN The Showcase of Helioseismology

Effects of rotation and magnetism on modes can be ignored (m=0)

KU LEUVEN Asteroseismic HRD (JCD)

Large frequency separation: measure of sound speed Small frequency separation: measure of discontinuities in the sound speed

Ageing from helioseismology alone is model dependent

Calibration, e.g., via meteorites, is better than 0.1% for "model S" (JCD et al.,1996)

KU LEUVEN Rotational splitting of solar p-modes

11

KU LEUVEN

Interior solar rotation

1st-order perturbative method: Ledoux splitting into 2l+1 components

$$\nu_{n,l,m} = \nu_{n,l} - m \int_{0}^{R} \int_{0}^{\pi} \Omega(\mathbf{r}, \theta) \mathbf{K}_{n,l}(\mathbf{r}, \theta) d\mathbf{r} + \Theta(\Omega^{2})$$

Magnetic splitting (l+1) is negligible for Sun's magnetic field

KULEUVEN Weighing & Sizing Stars

Size Does Matter!

KU LEUVEN Kepler data: SLO in 500+ dwarfs

No asteroseismic modelling of frequencies, but "scaling of solar physics" (Chaplin et al. 2014)

Transit Light Curves

Radius of exoplanet requires radius of host star! Asteroseismology to the rescue

KULEUVEN Asteroseismology & Exoplanets

 Delivery of seismic mass, radius, age for exoplanet host stars for understanding of exoplanetary systems

Ballot et al. (2011), Lebreton & Goupil (2014): HD 52265 (CoRoT), a G0V type, planet-hosting star modelled for various choices of input physics

Radius: $1.32 \pm 0.02 R_{sun}$,Mass: $1.23 \pm 0.09 M_{sun}$,Age: $2.32 \pm 0.22 Gyr$

Improves planet parameters!

Ensemble asteroseismology + spectroscopy for Kepler legacy sample (66 stars): M: 4%, R: 2%, age: 10% (Chaplin et al. 2014; Silva Aguirre et al. 2017)

KU LEUVEN Asteroseismic modelling for SLO

16 Cyg A&B, *Kepler*, Metcalfe et al. (2012)

Seismic Helium abundances of 0.24±0.01(2) for A(B) Verma et al. (2014)

Analysis of acoustic glitches (sharp features): gives depth of convective envelope & extent of He ionisation zone (Mazumdar et al. 2014)

KU LEUVEN Red Giant Asteroseismology

$0.8~M_\odot{<}M{<}3.0~M_\odot$

Solar-like p-mode oscillations & mixed p/g modes; Slow rotators: ignore Coriolis and Lorentz forces is fine!

Discovery of NRP in RG KU LEUVEN

KU LEUVEN Discovery of mixed modes in RG

Beck et al. (2011, Science) & Bedding et al. (2011, Nature): dipole mode forrest behave as acoustic modes in envelope & gravity modes near core

KULEUVEN Probing power red clump

p- and g-modes probe different regions throughout evolution

> Figure courtesy of Cole Johnston used in Aerts et al. (2019) ARAA, in press

Mixed modes probe core **KU LEUVEN**

KU LEUVEN Asteroseismology & Galactic Archeology

 Scaling relations for sun-like input physics:

$$\frac{\nu_{\max}}{\nu_{\max,\odot}} = \frac{M}{M_{\odot}} \left(\frac{R}{R_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{-\frac{1}{2}}$$
$$\frac{\Delta\nu}{\Delta\nu_{\odot}} = \left(\frac{M}{M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{R}{R_{\odot}}\right)^{-\frac{3}{2}}$$

deliver seismic mass, radius, age: relative precisions of 8, 4, 20% for 1000s of stars (RG) observed with Kepler (4 yrs)

Transform into seismic luminosities & distances, relative precision of few %

(Silva Aguirre et al. 2012, Miglio et al. 2013, Rodrigues et al. 2014, Anders et al. 2016)

So far: stars with similar metallicity... is scaled solar physics appropriate?

KU LEUVEN Asteroseismology & Astrometry

KU LEUVEN Asteroseismic Ageing in Galaxy

A parallax from Gaia can (partly) take away model dependency: radius from distance & brightness (+Teff) gives mass

KU LEUVEN Tribute to CoRoT, Kepler & Gaia

2.0

1.5

1.0

0.5

0.0

10⁰

Parallax_{TGAS} (mas)

TGAS/Seismo

Huber et al. (2017)

10¹

Asteroseismic Ageing as important input for Galactic Archeology

KULEUVEN Moving to stars with convective core

Scaling the Sun is OK for 4,8,20%-level R,M,age (bias?) but cannot improve stellar models

Δv

No "Sun" to scale... can only be done from asteroseismic modelling

 $M < 1 \ M_{\odot} \qquad \qquad 1 \ M_{\odot} < M < 2 \ M_{\odot} \qquad \qquad M > 2 \ M_{\odot}$

Major unknowns: M_{core} (r,t) & D_{mix} (r,t) & Ω_{rot} (r,t) extent & shape of convective boundary mixing? microscopic & macroscopic envelope mixing? Δπ

KULEUVEN "Classical" Stellar Modelling

$$\chi^2(P_1,\ldots,P_N) \equiv \sum_{j=1}^M \left[\frac{O_j^{\text{obs}} - O_j^{\text{theo}}(P_1,\ldots,P_N)}{\sigma_j} \right]^2$$

parameters
$$\mathcal{P} = \{P_i\}, i = 1, \dots, N$$

observables
$$\mathcal{O} = \{O_j\}, j = 1, \dots, M$$
 errors σ_j

Teff, log g, B-V, L, R, Z (or individual abundances), ...

four basic parameters (M, X, Z, τ)

KULEUVEN Observational Input: Precision

Method	Type of star	Diagnostic	Precision	Model dependence
Spectral lines	LM	$T_{\rm eff}$, abundances	~1%	A: medium
Spectral lines	IM	$T_{\rm eff}$, abundances	~2%	A: medium
Spectral lines	HM	$T_{\rm eff}$, abundances	~5%	A: medium
IRFM/SED ^b	LM, IM	T _{eff}	~2%	A: low
RV & light curves ^c	EB/SB2	М	~1%	None
RV & light curves ^c	EB/SB2	R	~3%	A: low
Interferometry ^d	All	R	~3%	A: low
Typical Gaia DR2 ^e	LM & IM	L	≲15%	A: medium
Typical Gaia DR2 ^e	LM & IM	R	≲10%	A: medium
Cluster (E)MST ^f	All	age	~30%	I: strong
Gyrochronology ^g	LM	Ω _{surf}	~10%	None
Gyrochronology ^g	LM	age	~20%	I: medium
Coherent g modesh	IM	w _{nim}	~0.1%	None
Coherent p modesh	IM	w _{nlm}	~0.01%	None
Damped p modes ^h	LM	ω _{nim}	~0.001%	None
Damped mixed modes ^h	RG	ω_{nlm}	~0.01%	None
g-mode splittings ^h	IM	Ω _{core}	~0.1%	None
g-mode spacings ^h	IM	Ωcore	~5%	I: low
p-mode splittings ^h	IM	Ω _{env}	~30%	I: medium
p-mode splittings ^h	LM	Ω _{env}	~50%	I: medium
mixed-mode splittings ^h	RG	Ω _{core}	~1%	None
Phase modulation & RV ^{h,i}	PB1/PB2	M, R	as EB/SB2	None

Aerts et al. (2019), ARAA, Vol. 57, in press

RiA via https://www.annualreviews.org/doi/pdf/10.1146/annurev-astro-091918-104359

Asteroseismic Modelling

Aerts et al. (2018): take into account that parameters are correlated ₃₁

In absence of rotation, expected g-mode period spacings for high-order (n), low-degree (I) NRP:

KU LEUVEN Discovery of g-mode period spacings

nature

Vol 464 11 March 2010 doi:10.1038/nature08864

From 5 months of CoRoT monitoring LETTERS of the B3V star HD 50230

Deviations from a uniform period spacing of gravity modes in a massive star

Pieter Degroote¹, Conny Aerts^{1,2}, Annie Baglin³, Andrea Miglio⁴, Maryline Briquet¹, Arlette Noels⁴, Ewa Nien Josefina Montalban⁴, Steven Bloemen¹, Raquel Oreiro¹, Maja Vučković¹, Kristof Smolders¹, Michel Auver, Frederic Baudin⁶, Claude Catala³ & Eric Michel³

Pápics et al. (2014) 4 years of Kepler data of a B9V star 19 zonal dipole g modes

KU LEUVEN Modelling of slow rotators

KU LEUVEN Improving (convective boundary) mixing

Intermediate-mass stars from 4-yr Kepler **KU LEUVEN**

KU LEUVEN Modelling based on zonal modes

KU LEUVEN KIC10526294: need for envelope mixing

Moravveji et al. (2015): zonal dipole g-mode period spacings need of envelope mixing in addition to core overshooting

KULEUVEN Asteroseismic modelling of F stars

Kepler 4-year LCs delivering asymptotic period spacing Δπ & Teff, log g from highresolution spectroscopy

37 F-type stars with identified gravity modes: M, Mcore, R, Rcore, age with ~10(4x), 20% precision

Mombarg et al. (2019): to be improved by individual g-mode period matching

KU LEUVEN TESS-ting teaser (Sectors 1&2)

Cole Johnston & Dominic Bowman, KU Leuven

Asteroseismology for Stellar Evolution, Exoplanets, and Galactic Structure

Class 1: Introducing starquakes Class 2: Weighing, Sizing, Ageing Class 3: Angular Momentum Transport