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1Introduction
At first there was something we will probably never know. Then, something
happened which we might never understand. This led to the creation of the
Universe as we know it. The first thing our Universe did was to expand, a process
that appears to still be ongoing. The study of how the cosmos as a whole is acting
is the topic of the field of cosmology.

Over the history of mankind many attempts have been made to describe
our Universe. However, when we talk about cosmology as a science, it starts
with Einstein’s formulation of general relativity (Einstein, 1916; Einstein, 1917).
Specifically, Einstein’s equations can be solved in the special case of the cosmo-
logical principle. The cosmological principle states that, at the largest scales,
the Universe is homogeneous and isotropic. If you assume a homogeneous and
isotropic density distribution, Einstein’s equations simplify to give expanding
or contracting solutions. In these universes the metric that describes space-time
takes the form of the Friedmann-Lemaître-Robertson-Walker metric (Friedmann,
1922, 1924; Lemaitre, 1931; Robertson, 1935, 1936; Walker, 1937)

−ds2 = −c2dt2 +a(t)2(dr2 + r2dΩ2) (1.1)

where a(t) is the expansion factor of the universe. The validity of this equation,
and its prediction of a universe that is expanding was validated by the observa-
tions of Hubble (1929). As noted by Lemaître, the expansion of the universe can
be traced back to a singular point in time, where the Universe emerged from a
singularity. This "Big Bang" lies at the start of our Universe. With current theo-
ries we can explain most of the processes the Big Bang (and inflation). However,
the Big Bang and the processes that precede it are likely to remain a mystery for
a very long time, and possibly forever.

1.1 The cosmic web and ΛCDM

As demanded by the cosmological principles, according to the Friedmann equa-
tions, the Universe is perfectly isotropic and homogeneous. This is true on the
very largest scales. However, the small inhomogeneities originating from quan-
tum fluctuations that are grown to cosmic proportions by inflation form the seed
of all the structures that we see in the Universe today. With the passing of time
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Figure 1.1: The dark matter distribution of the universe as predicted from the
FLAMINGO simulations. The intensity shows the dark matter density at each
point, while the colour shows the neutrino density at each point. The prominent
connected structure is what is called the cosmic web.

these small overdensities grow to becomemore and more dense. At first this hap-
pens linearly, the density fluctuations growing with the same linear factor on all
scales, until eventually they undergo non-linear collapse and become virialized
objects, which we refer to as haloes. It is only on the scale of haloes that non-
gravitational effects start playing a big role. Large scale structure formation can
be described almost completely using gravity only.
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1.1.1 The cosmic web

At intermediate scales, in between uniformity and virialisation, a particularly
striking pattern emerges: the cosmic web (Bond et al., 1996). The cosmic web is
an interconnected multi-scale structure that permeates the galaxy distribution.
The cosmic web structure is shown for the FLAMINGO simulation in Fig. 1.1.
The structure of a large scale cosmic web can be predicted from first order per-
turbation theory (Zel’Dovich, 1970) on the Lagrangian hydrodynamic equations
in an expanding universe. The prominent structures of the cosmic web originate
from the different axes along which gravity can lead to collapse. Collapse along
all three axes leads to dense nodes, collapse along two axes leads to extended
filaments, collapse along a single axis leads to flattened walls and expanding re-
gions become empty voids. Much like haloes, these individual structures form
hierarchically, and nodes, filaments, walls and voids can all merge and form big-
ger structures. As the cosmic web is both the first structure to emerge and the
structure within which galaxies are distributed, this makes it an interesting field
of study.

The cosmic web emerges as the result of gravitational collapse in a near uni-
form medium. Because this process happens on many different scales simulta-
neously, it gives the cosmic web somewhat of a fractal morphology, only broken
at the point where haloes start virialising. This multi-scale nature of the cosmic
web makes it naturally difficult to quantify and identify, as there are no a priori
set boundaries between each different part of it, and each individual element of
the it can appear at a multitude of different scales.

To identify the cosmic web, there is a range of methods available that vary
greatly in how they distinguish the different components. Because the cosmic
web is by nature multi-scale, it comes naturally to define the components of the
cosmic webmorphologically or according to the local dynamics. The morphology
of the density field is what is used for methods like the multi-scale morphology
finder (MMF) and NEXUS(+) (Aragón-Calvo et al., 2010; Cautun et al., 2013). In
these methods the morphology of the density field is determined by using the
Hessian or tidal tensor. The sign of the eigenvalues of this tensor holds informa-
tion about the local morphology, showing whether there has been collapse along
one of the axes. This processes leads to a morphological identification for the
Hessian of the density field, and a dynamical identification for the tidal tensor.
NEXUS+ further pre-processes the density field by making use of a multi-scale,
log-space filteringmethod to bring out the structures at all scales, leading to a de-
tailed rendering of the cosmic web. One alternative to these methods is to make
use of the topology of the field (see e.g. Sousbie, 2013; Bermejo et al., 2024) but
these are not used in this thesis.

By making use of the method NEXUS+, Cautun et al. (2014) make an inven-
tory of the properties of the cosmic web and of the haloes that reside in it. In
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the Universe, about half the mass is in cosmic filaments, while voids make up
most of the cosmic volume at about 77%. The nodes take up less than 0.1% of the
volume but still make up about 11% of the mass. Nearly all halos with a mass
higher than M200c

1> 1013.5 M⊙ are found only in the nodes of the cosmic web.
The different elements will also create different morphologically distinct tidal
and force fields, that can, for example, impact the orientation of halos (Jones &
van de Weygaert, 2009; Ganeshaiah Veena et al., 2019, 2021). A more complete
understanding of the cosmic web will further inform us about both cosmology
and galaxy formation.

1.1.2 Towards a standard model

The existence of a cosmic web has been verified observationally. Some of the ear-
liest confirmations came in the form of the "Stickman" found in the Centre of
Astrophysics (CfA) redshift survey (de Lapparent et al., 1986), shown in Fig 1.2.
This slice of the Universe shows a collection of filaments connected to a cluster in
the center in the slice. The image also shows the "fingers of god" redshift distor-
tions, where objects with a high velocity dispersion, like clusters, are stretched
out along the viewing direction.

At around the same time, the first large-scale structure formation simulations
where being done (Davis et al., 1985; Frenk et al., 1985; White et al., 1987). These
simulations where predicting structures similar to what was found in observa-
tions. At the time, cosmologies with Ωm , 1, let alone with a cosmological con-
stant, where still quite non-standard, and only a limited exploration was done of
different models. However, in comparisons with the redshift surveys (Efstathiou
et al., 1990) and galaxy clusters (Eke et al., 1996) it already seemed that a universe
with Ω ≈ 0.3 matched the data better. Together with observations from galaxy
rotation curves (Rubin et al., 1980) indicating that there was potentially a large
dark component of the matter density. The field was moving towards a shift in its
standard model. The observation that many see as the establishment of the new
paradigm are the the results from the supernova cosmology project (Perlmutter
et al., 1999). By making use of the supernova type 1a standard candle, they made
a definite detection of accelerated expansion driven by a cosmological constant
Λ that accounted for ΩΛ ≈ 0.7 of the energy density of the universe. This paved
the way for our current standard model of cosmology: ΛCDM.

1.1.3 ΛCDM

Over two decades later, ΛCDM is still the gold standard of cosmology. As a
model, ΛCDM indicates a universe with a flat geometry, that contains both a

1M200c is defined as the mass inside a spherical aperture where the average matter density is 200
times the critical density of the universe.
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Figure 1.2: Early results from the CfA redshift survey, showing the first clear
rendering of the cosmic web. The image is often referred to as "the stickman",
due to the appearance of the redshift-distorted cluster in the center of the frame.
Image taken from de Lapparent et al. (1986).

cosmological constant and a cold dark component of matter that only interact
via gravity. In ΛCDM the early universe is characterised by a period of rapid
inflation. During this period of inflation, the seeds of structure are planted via
quantum fluctuation and the universe becomes geometrically flat. In its simplest
form ΛCDM can predict structure formation along the entirety of cosmic time,
according to six input cosmological parameters

• Ωch
2 - The cold dark matter content in the universe.

• Ωbh
2 - The baryonic matter content in the universe.

• t0 - The age of the universe.

• ns - The power-law scalar index of the power spectrum of the primordial
fluctuation field.

• ∆2
R - The amplitude of curvature fluctuations.

• τ - The optical depth to reionisation.

From these six the other more commonly used parameters can be directly de-
rived. For example the Hubble constant H0, which describes the expansion rate
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of the universe, and σ8 which describes the level of matter fluctuations on a scale
of 8h−1 Mpc. With just these parameters, most of the last two decades of obser-
vations can be accurately modelled and predicted. Up to this point, there has
seemed to be only one very clear downside to ΛCDM. None of the three pillars of
the model, dark energy, dark matter and inflation, currently have a clear physical
mechanism that drives their existence. In essence, this makes ΛCDM mostly an
empirical model.

In base ΛCDM there are a number of parameters that are kept constant at
their most natural values. However, there are certain extensions that can be made
to the model that are self-contained withΛCDM. Some examples are the effective
number of neutrinos species Neff and the assumption of a flat universe. Both of
these have been independently verified to be consistent with their natural values.
There are some extensions of ΛCDM that add new processes to it not included in
the base model. One example of this is the addition of massive neutrinos which
we know exist, but are not part of standard ΛCDM. Another example is to add a
parametric equation of state for dark energy

wDE = w0 + (1− a)wa, (1.2)

where wDE = PDE
ρDE

relates the pressure and density of dark energy and a is the ex-
pension factor. For this addition, the extension is more like a perturbation. This
extension is sometimes refered to as waw0CDM. Finding a significant deviation
from (w0,wa) = (−1,0), the values which correspond to a cosmological constant,
would indicate additional limitations within base ΛCDM.

1.1.4 The Cosmic Microwave Background

One of the biggest successes of the hot Big Bang model is the prediction of a cos-
mic background radiation. Just after the Big Bang the universe is extremely hot
and dense, and light is unable to free stream over large distances. Once the uni-
verse cools down enough for the hydrogen to become neutral, the period referred
to as the era of recombination, the photons that were trapped in the Big-Bang
plasma are able to free stream for the first time. The radiation from these pho-
tons is still detectable today in the Cosmic Microwave Background (CMB). The
CMB gives us a window to how the universe looked like about 300.000 years after
the Big Bang. The accurate measurements of this radiation are one of the main
pillars of modern cosmology.

The original discovery of the CMB by Penzias & Wilson (1965) went paired
with its description by Dicke et al. (1965). Since then, multiple satellites like
WMAP (Komatsu et al., 2003) and Planck (Planck Collaboration et al., 2020a),
and also ground based observatories like SPT (Story et al., 2013) and ACT (Sievers
et al., 2013) have revolutionised the level of accuracy with which we can constrain
cosmological parameters. The Planck cosmological parameters are measured at
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better than per cent level accuracy. Because of the robustness of the modelling of
the CMB fluctuation signal, the consistency in the fitting of cosmological param-
eters, and the high sensitivity of the signal to the cosmological parameters, the
results from the Planck satellite form the reference model of cosmology.

Besides the primary CMB, in other words, the angular power spectrum of pri-
mordial fluctuations, the radiation of the CMB holds a wealth of other probes
of cosmology and structure formation. Of particular interest are the Sunyaev-
Zel’Dovich (SZ) effect and weak lensing of the CMB. The SZ effect is caused by
CMB photons interacting with high energy electrons between the time of emis-
sion and the time of measuring. This leads to a distinct spectral feature in the
CMB. As the effects are caused by high energy electrons, the SZ effect is stronger
for path-lines that cross galaxy groups and clusters, where there is a high temper-
ature electron plasma. The use of the SZ effect for galaxy cluster cosmology will
be covered later in this chapter. Besides cluster-finding, the SZ effect can also
be mapped over the entire sky (Planck Collaboration et al., 2014; Bleem et al.,
2022). When looking at the power spectrum of these maps, there is a (slight)
internal tension within the Planck results (McCarthy et al., 2018, 2023). At large
scales, simulations predict SZ to have higher power at matched cosmology, and
a lower σ8 would partially resolve the tension. At small scales, there is a general
mismatch between the power spectrum and any predictions. For both scales there
is a likelihood that this is due to systematics in dealing with foreground removal,
which is highly non-trivial for SZ. For example a large shift was seen with the
Planck results between the 2013 and 2015 releases of the SZ signal maps. Such
an inconsistency is not found for the Planck lensing results (Planck Collabora-
tion et al., 2020b). Even though CMB lensing also probes the structures along the
line of sight, the cosmological inference is perfectly consistent with the Planck
cosmology, though it is sensitive to higher redshift than SZ.

1.1.5 Galaxy surveys and the S8 tension

When investigating the large-scale structure of the Universe, we are limited to
matter that emits light (or potentially gravitational waves or non-photon cosmic
rays, but those are outside the scope of this thesis.) Because of this limitation,
our main probes of structure are galaxies. Galaxies are the lighthouses that pop-
ulate the large-scale structure. For cosmology, the distribution of galaxies holds
information on the large-scale structure and hence can be used to constrain cos-
mological parameters. Much like the CMB, a lot of the information is contained
in the first order clustering, measured using the correlation function.

When it comes to measuring galaxies for cosmology, there are a few ap-
proaches that can be taken. In the simplest form, galaxies can be counted as a
function of their position on the sky to measure their angular correlations. If the
redshift is also measured, 3D correlation function analyses are possible. Because
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Figure 1.3: SDSS Galaxy distribution. Each dot represents a galaxy, color indi-
cates high number density. Image credit: M. Blanton and SDSS

of the peculiar velocities of the galaxies, the redshifts will give a distorted view
of the large-scale structure. However, the redshift-space distortions themselves
also hold cosmological information and can be used for cosmological inference.
Obtaining spectra for every galaxy is not a trivial matter, and any galaxy survey
that wants to use redshifts needs to be specifically designed to also measure
them. Therefore many surveys now also rely on photometric redshifts, where a
number of observing bands are used to give a rough estimate of the redshifts.
This is particularly useful for weak lensing surveys. To measure week lensing,
the most important observable is the shapes of galaxies, as their deformation
gives statistical information about the matter distribution along the line of sight.
By making use of photometric redshifts, the matter field can be analysed in a few
tomographic bins. By studying lensing as a function of redshift, we can obtain
additional cosmological constraints.
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Major constraints on the baryonic acoustic oscillations, peaks in clustering
at certain scales caused by acoustic waves in the primordial matter field, using
galaxies are obtained with the Sloan Digital Sky Survey (SDSS), Baryon Oscilla-
tion Spectroscopic Survey (BOSS) (Dawson et al., 2013; Ross et al., 2017; Icaza-
Lizaola et al., 2020) shown in Figure 1.3. BOSS provides some of the tightest
constraints at the redshifts they are sensitive to. The BOSS results are also in
agreement with the results from the Planck satellite. When it comes to spectro-
scopic surveys, the Dark Energy Spectroscopic Instrument (DESI) has also started
reporting their first cosmological results (DESI Collaboration et al., 2024). In
their initial data release they report finding a 3.9σ detection of a waw0ΛCDM
signal when they combine their results with the results from the Planck satellite.
It is however likely that this is driven by some of their zeff = 0.5 data bin, which
might prove to be a statistical fluke, as the results from BOSS don’t agree in this
redshift range.

When it comes to galaxy surveys, many current and upcoming surveys have
largely been designed to measure cosmology trough weak lensing. In general
relativity, light-rays travel along geodesics, which are straight only when space-
time is flat. However, as spacetime can be curved, large gravitational bodies alter
the the pathways of photons and distort the images of objects whose light passes
trough their potential. For deep potentials, this usually leads to effects similar to
light passing trough a lens, hence the name. The most massive galaxy clusters act
as strong lenses, where the background light is heavily distorted. However, for
large galaxy surveys, most objects are in the weak lensing regime, either around
less massive objects, or at larger distances from the most massive clusters. In the
weak lensing regime, the distortions of objects is too weak to pick up. Instead,
what is measured is the statistical distortion due to the lensing of many galaxies.
The signal is measured from sky-position correlated distortions of the shapes of
a large sample of galaxies.

Many large galaxy surveys have measured the weak lensing signal, with inter-
esting results. The results from the KiDS survey (Heymans et al., 2021) show a
tension with the results from the Planck survey. The the value found for the clus-
tering parameter σ8 is ≈ 3σ lower than the Planck results. Results from the HSC
surveys (Miyatake et al., 2023) find a 2σ tension and the results from the Dark
Energy Survey (Abbott et al., 2022) are at about 1.5σ compared with Planck.
This has led to what is now called the S8 tension, named after the parameter S8,
which is the combination of σ8 and Ωm that is maximally constrained by lensing
surveys. The difference is relatively small, however, as weak lensing also probes
the smaller scales, there is also astrophysical information to be learned. In order
to further investigate the S8 tension, we need further advances in the models we
use to both compare the observations to and measure cosmology from.
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1.2 Models for cosmology

In order to test our understanding of galaxy formation and cosmology, there is a
plethora of models with which the data can be compared. These models are the
backbone of any cosmological inference. With advances in both the depth and
the observing area of cosmological surveys, it has become imperative that models
keep up with the high accuracy demanded by the observations. Stage 4 surveys
like LSST, Euclid, Nancy Roman, Simons observatory and CMB-S4 will demand
accuracy in the power spectrum at the level of less than a percent. This level
of precision not only makes accurate modelling a requirement, but processes like
neutrinos and baryonic physics now need to be accounted for andmodelled accu-
rately. In this section different methods of modelling are discussed, starting from
analytic models and leading to more and more complex models. The details of
preparing these models for the high-accuracy constraints of upcoming surveys
will be discussed where applicable.

1.2.1 Initial conditions

In order to initialise our cosmological models, we need to specify initial condi-
tions. Within ΛCDM, the initial density field is described by a Gaussian random
field, defined only by its power spectrum with random phases. The fluctuations
in this random field originate from quantum fluctuations that were stretched
to cosmic scales via inflation (Guth, 1981; Linde, 1982). While deviations from
Gaussianity are one of the probes of deviations from standardΛCDM, our current
constraints are still consistent with a perfectly Gaussian random field (Planck
Collaboration et al., 2020c).

Because the initial conditions are Gaussian, the main ingredient that needs
to be specified is the matter power spectrum. In ΛCDM, the equations of the
early universe can be fully specified, and then calculated numerically. This initial
matter power spectrum is often referred to as the linear matter power spectrum.
As structure formation happens power first grows linearly across all scales, hence
the name, but as structures formation evolves it becomes non-linear and starts
forming virialised structures. To calculate the linear power spectrum we make
use of Boltzmann solvers that solve for the equations of the early universe. Two
of the most widely used packages are CAMB (Lewis et al., 2000; Howlett et al.,
2012) and CLASS (Lesgourgues, 2011a,b).

The linear matter field quickly evolves into the non-linear regime, for which
the initial conditions become slightly more complex. For Lagrangian methods,
the first proper initial conditions generation algorithm comes from the work by
(Zel’Dovich, 1970). From the initial density field, the motions of a set of particles
can be described via ballistic motion. This method is known as the Zel’Dovich
approximation and can also be used to evolve the matter field to the current
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time. However, the method becomes inaccurate once particles start crossing each
other’s paths. The Zel’Dovich approximation is the first order of Lagrangian per-
turbation theory applied to the cosmic density field. Since Zel’Dovich there have
been developments that allow for the generation of nested random phases (Jenk-
ins, 2013), that also make it easier to re-simulate smaller parts of the simulations
at higher resolution. Initial conditions can now also be initiated to 2nd (Hahn &
Abel, 2011) and 3rd order (Hahn et al., 2021).

Another major improvement for initial conditions is that there is no longer a
need for "back-scaling" the power spectrum. When back-scaling, agreement be-
tween simulations and the linear power spectrum is guaranteed by first calculat-
ing the z=0 linear power spectrum with CLASS or CAMB, and scaling this power
spectrum back to the starting redshift. With codes like monofonIC (Hahn et al.,
2021), no longer use this approach. This makes the biggest difference at interme-
diate redshifts, as it leads to the proper evolution. Additionally, for simulations
with gas and dark matter, monofonIC treats the different matter fields properly,
and gives a different inital power spectrum to gas and dark matter. The use of
higher order Lagrangian perturbation theory also allows the ICs to be evolved
to lower redshifts, which reduces the noise incurred in numerical simulations at
high redshifts. Extensions to the base ΛCDM model also have to be added to the
ICs to achieve high precision, like for example massive neutrinos (Elbers et al.,
2022).

1.2.2 Halo models

Now that we can generate initial conditions, let’s start with an analytic formula-
tion of structure formation: the halo model (For a recent review see Asgari et al.,
2023). The halo model is a useful model to discuss as it nicely splits up the prob-
lems into smaller parts, which will make some of the choices made for the more
complex models easier to understand. The halo model makes predictions for the
matter power spectrum and is able to predict the clustering of matter in halos
and subhalos with only a few ingredients: The linear matter power-spectrum, the
halo mass function, the satellite number density profile and the halo occupation
distribution.

The halo model splits the calculation into two terms: the two halo term and
the one halo term. The two halo term describes the clustering between central
halos. This thus describes clustering on large scales. The one halo term describes
clustering within a single halo, between the central and its satellites. This pre-
scription assumes that matter beyond the virial radius of halo clustering can be
described via linear theory, while all matter inside haloes is described by and
NFW profile. At both large and small scales the halo model can be very accu-
rate. However, at intermediate scales, where neither the one or two halo terms
dominates, it can become very inaccurate. Current halo models specifically add
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correction terms that are fitted to simulations to decrease the uncertainty in the
intermediate regime. This allowsmodel like HMCode (Mead et al., 2021) to reach
quite a high accuracy of a few per cent. The flexibility of halo models also make it
possible to add beyond ΛCDM physics to the model, like the neutrinos, baryons
and differing dark energy equations of state included in HMCode. Halo models
are quick and easy to use. However, more complex and complete simulations are
always needed to check that the results are accurate.

1.2.3 Dark matter only simulations

Dark matter only simulations make the simplifying assumption that all matter
in the universe can be represented as dark matter that only interacts via gravity.
This simplifies the calculations. The matter density field is usually represented
as dark matter particles, that are evolved in a Lagrangian way. For systems with
a small number of bodies gravity can be solved by calculating all the particle-to-
particle forces. However, as these calculations scale as∼N2, this quickly becomes
computationally infeasible. To solve this, the long range forces are usually imple-
mented via a particle mesh (Hockney & Eastwood, 1981). Here the particles are
binned onto a density grid, the mesh, allowing the forces to be calculated using
an fast Fourier transform. This speeds up the calculation as this process scales as
N logN . With this method cosmological simulations become possible. This type
of simulation was popularised by Davis et al. (1985); Frenk et al. (1985); White
et al. (1987). Some of their results are shown in Figure 1.4

Particle mesh was the first step towards quick and efficient calculations of
dark-matter simulations. Modern codes, like GreeM (Ishiyama et al., 2009),
PKDgrav, (Stadel, 2001; Potter et al., 2017), GADGET-4 (Springel et al., 2021)
and SWIFT (Schaller et al., 2023) make use of a mesh for large scale forces,
and most opt for a tree-based fast-multiple-moment force calculation for the
particle-particle forces at small scales. This approach allows for both the speed
and easy periodic boundary conditions of a large scale mesh, and accurate forces
on short scales using the fast-multiple-moment method. This way the evolution
of the matter field can be calculated both efficiently and accurately.

It is exactly because of their relative ease that dark matter only simulations
are widely used. Because all matter is assumed to be dark, these simulations
make no direct predictions for galaxy properties besides the properties of the
dark matter haloes, which are largely not observable. Dark matter only simula-
tions are often populated with galaxies with different properties. To do this there
are various methods that will be described in the next section. Their efficient na-
ture also makes them the perfect candidate to create training sets for emulators
that predict the effect of changing cosmologies.

Due to their flexible nature, there are a lot of big dark matter only projects
that are still being used. Perhaps the most famous being the Millennium sim-
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Figure 1.4: Results of a cosmological simulation by the ’Gang of four’. Image
from Davis et al. (1985).

ulation (Springel et al., 2005a). The simulation encompassed a (500h−1 Mpc)3

volume at a resolution of 8.6× 108 M⊙ and provides lots of insight into both cos-
mology and galaxy formation. In the era of precision cosmology, dark matter
only simulations are the backbone for the creation of mock surveys for current
and upcoming galaxy surveys. The simulations fall into two categories, depend-
ing on whether they are meant for large scale mock surveys, or for emulators. In
the first category we have simulation like the Euclid flagship (Potter et al., 2017)
and Uchuu (宇宙, Universe in Japanese) (Ishiyama et al., 2021). In this case the
goal is to simulate an enormous volume. This usually leads to single simulations
with a very large particle number. The large volumes are needed to be able to ac-
commodate the depth and survey area of upcoming surveys. The other approach
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is to run a large number of smaller simulations, like Mira Titan (Heitmann et al.,
2016) and AbacusSummit (Maksimova et al., 2021). In this case the different
simulations sample cosmological parameter-space probed by upcoming surveys.
The final goal of such simulation suites is to provide the training data for cos-
mological emulators. As mentioned before, we will describe these in more detail
later.

1.2.4 Populating dark halos

A lot of the use of dark matter only simulations comes from the models that are
attached to the results of these simulations. The final distribution of halos can
be populated with galaxies to create mock surveys. This way we can learn more
about what is required for the build-up of galaxies. There are various methods
for populating dark matter halos.

The simplest of these methods uses a Halo Occupation Distribution (HOD)
(Berlind & Weinberg, 2002). The HOD describes the number of satellites halos
per host halo, usually as a function of mass. However, these models can be made
more complex to account for more complex, non-linear effects in the clustering,
see for example the AbacusHOD (Hadzhiyska et al., 2023). While HODs are
generally quite simple models, their flexibility makes them ideal for generating
mocks. As HODs are applied after the simulation is done, one can quickly iterate
over their parameters. For cosmology this means that the HOD parameters can
be marginalised over, which may be preferred over assuming an explicit relation.

There are various, more complex, ways to make the connection between ha-
los, subhaloes and galaxies. One of these methods is SubHalo Abundance Match-
ing (SHAM), see for example Moster et al. (2010). For this method the primary
assumption is to assume that bigger galaxies reside in bigger subhalos, which in-
clude both centrals and satellites. With this assumption, observed distributions
of galaxies can be matched to a simulated subhalo distribution, thus populating
the subhalos with galaxies. The most complex models fall into the category of
semi-analytical models (SAM). These models are physics based, like for exam-
ple Galform (Cole et al., 2000), L-GALAXIES (Yates et al., 2021) or Dark Sage
(Stevens et al., 2023). For these models the full evolutionary histories of haloes is
taken into account, and the galactic properties are calculated across cosmic time.
SAMs come with free parameters that are tuned to replicate specific observations.
Finally there are empirical models like UniverseMachine (Behroozi et al., 2019),
where galaxy properties are fit to match observations.

1.2.5 Emulators for cosmology

While running ever larger simulations to account for the large observational vol-
umes is very important for mocks, we need to be able to make very accurate
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predictions for a large range of cosmologies, to constrain cosmological parame-
ters with upcoming missions. While halo models can do this cheaply, the extreme
accuracy requirements of upcoming surveys favour taking a more agnostic, ap-
proach that uses inputs from full simulations. As running full dark-matter-only
simulations (let alone hydro simulations) for methods like Markov Chain Monte
Carlo (MCMC) is not a viable strategy when it comes to the required computa-
tional time, this problem is overcome by making use of the wealth of machine
learning literature that has recently become more and more popular. The main
advantage for cosmology is that a limited amount of high accuracy simulations
can be used to train a machine learning model. The trained model can then make
prediction for how different observables respond to changes in cosmology.

To set up the emulators, a suite of simulations is run where the cosmological
parameters of interest are efficiently varied to cover the parameter range. Instead
of a regular lattice, the parameter space can be covered via more efficient meth-
ods like using a Latin hypercube (Sacks et al., 1989; Morris & Mitchell, 1995).
In a Latin hypercube each dimension is sampled uniformly, i.e. the same value
never appears more than once like in a regular grid. To optimise the volume
coverage, the parameter vectors for each sampling is scrambled until an optimal
volume filling is found. Using these designs, high accuracy can be obtain with
a limited set of simulations. For example, using their own framework described
by Heitmann et al. (2008), Heitmann et al. (2009) is able to achieve percent level
accuracy when varying five cosmological parameters using only 37 training sim-
ulations.

Once the parameter space is designed, and the to-be emulated observable is
obtained at each of the nodes, the emulator is trained using machine learning.
For the machine learning method used, different projects use different methods,
which are all able to reach sufficient accuracy. Some examples of used methods
are Gaussian processes (Heitmann et al., 2009; Bocquet et al., 2020; Moran et al.,
2022), polynomial chaos expansion (Euclid Collaboration et al., 2019) and neural
networks (Angulo et al., 2021). At this moment emulation has been used mostly
for the power spectrum and halo mass function, however, as we will explore in
later sections and chapters, the ability to directly predict observables as a func-
tion of cosmology and simulation parameters is a powerful tool that should be
used for more and more goals. An example of this is the emulator for weak lens-
ing aperture masses by Debackere et al. (2022). Emulators using hydrodynamical
simulations will be discussed later.

1.2.6 Cosmological hydrodynamical simulations

The most self-consistent way to model the universe is via the use of cosmological
hydrodynamical simulations, which are the main type of simulations used in this
thesis. As the name suggests, these simulations also model the evolution of the



1

16 Chapter 1. Introduction

10 Mpc

1 Mpc

10 Mpc

1 Mpc

104 105 106 107 108 109

Gas surface density [M  kpc 2]
104 105 106 107 108 109

CDM surface density [M  kpc 2]

Figure 1.5: A comparison of the gas (left) and cold dark matter (right) distribu-
tion of a small cluster in the FLAMINGO suite of simulations. Figure taken form
Schaye et al. (2023).

baryonic matter field using hydrodynamics. This complicates the modelling as
this means that the hydro-forces now have to be solved on top of the gravity-only
calculation described before for the dark matter. A comparison of gas and dark
matter in such a simulation can be seen in Figure 1.5.

To solve the hydro forces, one can take one of two approaches: a Eulerian
approach or a Langrangian approach. Both approaches, and methods that are
in between, are widely used. One of the main numerical difficulties for cosmo-
logical simulations is that there is a very wide range of scales that need to be
resolved. From the large-scale structure at scales of ∼ 100 Mpc to galaxies at
scales smaller than ∼ 10 kpc there are already four orders of magnitude, with-
out even resolving anything that happens inside galaxies. The main numerical
challenge is focusing the computational effort in the dense regions where there is
more to resolve, while degrading the resolution in regions where barely anything
happens like in cosmic voids.

For Lagrangian particle methods this sort of optimisation comes quite natu-
rally. As the resolution elements are represented as particles with similar mass,
higher-density regions are resolved by more closely spaced particles. A popular
lagrangianmethod is Smooth Particle Hydrodynamics (SPH) which is used by, for
example, the codes GADGET-4 (Springel et al., 2021) and SWIFT (Schaller et al.,
2023), with specific implementations like SPHENIX (Borrow et al., 2022) and
Gizmo (Hopkins, 2015). In SPH, while particles have similar mass, the density
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can vary. The smoothing length, which defines the area over which the particles
mass is distributed, can become larger and smaller depending on the density.
In high density regions the smoothing lengths are smaller and the resolution is
higher. In low density regions the smoothing lengths are larger and the resolution
is lower.

Because of the multi-scale nature of the large-scale structure, a grid code with
a uniform grid is too expensive for most applications. One solution is to use
adaptive mesh refinement, like the code RAMSES (Teyssier, 2002). In this case
when a cell in the grid becomes too massive, the cell is split into smaller cells,
increasing the local resolution. Again roughly conserving mass is the natural
choice here, as this will lead to higher resolution in dense regions.

Additionally one can make use of a lagrangian grid code. One example of this
is the code Arepo (Springel, 2011; Weinberger et al., 2020). Arepo makes use of a
moving mesh. In this case advantages of both methods are combined. A moving
adaptive mesh allows the equations of hydrodynamics to be solved as if it was
a regular grid code, which is usually seen as more accurate than for example
an SPH approximation. At the same time the mesh is allowed to moved, so the
computational time can be focused in the higher density regions.

One of themain difficulties of doing cosmological hydrodynamics simulations
comes from the fact that a lot of processes that are important for galaxy formation
play out on much smaller scales than the simulation can resolve. From star for-
mation, stellar feedback and black holes, that can play out on sub-parsec scales,
to atomic cooling, it is unlikely that we will resolve the full range of scales in the
foreseeable future. However, as these processes are able to affect the scales that
are resolved by the simulation, they are added as subgrid/sub-resolution mod-
els, models for processes that are not resolved by the simulation. In the next few
sections the most important subgrid models for cosmological hydro simulations
will be detailed.

1.2.7 Radiative cooling and star formation in hydro simulations

The first model that will be discussed is what is referred to as radiative cooling,
though models for cooling generally include the effects of both radiative heating
and cooling. Cooling in cosmological simulations generally refers to processes
that affect the internal energy of the gas elements via radiative processes. Because
most simulations do not include ray-tracing of the light that is produced by star
particles, stellar radiation fields are usually also added to the cooling.

The complexity of cooling models is set by the assumptions that are made
when computing the cooling rates. Early models assumed collisional ionisa-
tion equilibrium and solar relative abundances (e.g. Sutherland & Dopita, 1993).
However, there are many other processes that can influence what is called cool-
ing in simulations. Examples of these are photo-ionisation, variations in the rel-
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ative abundances of certain elements, a UV background, high density gas being
affected by a stellar radiation field and self-shielding. Depending on the assump-
tions, the energy loss of particles can change by quite a bit, and it can have a
big impact on, for example, the lowest temperatures gas can cool too. In order
to calculate cooling rates, it is common to use packages that make use of theo-
retical calculations and lab results, like CLOUDY (Ferland et al., 2017). To in-
corporate a changing radiation field due to the UV background, stellar light and
self-shielding, modern cooling tables make use of the local density (Ploeckinger
& Schaye, 2020).

Once gas is allowed to cool, there could be instances of runaway collapse in-
side simulations. In this case gas can start cooling very rapidly and reach very
high densities. Besides potentially leading to nonphysical situations, this will
also cause the calculations of the hydro forces to become much more expensive.
In the regime of large cosmological simulations, where it is unfeasible to add the
feedback processes that can halt runaway collapse and create a realistic multi-
phase ISM, this problem is solved by adding an artificial "equation of state" (EoS)
via the use of an entropy floor. The form introduced by Schaye & Dalla Vecchia
(2008) is given by

TEoS = 8000 K
( nH
10−1 cm−3

)1/3
, (1.3)

where nH is the hydrogen number density. Gas that cools onto the EoS effectively
acts as a subgrid model for a properly pressurised multi-phase ISM.

The addition of the EoS also informs us about subgrid models for star forma-
tion. As described by Schaye & Dalla Vecchia (2008), the EoS in Eq. 1.3 corre-
sponds to a constant Jeans mass of 107 M⊙. Part of the gas that is close to or on
the equation of state should therefore be assumed to be able to form stars. When
it comes to models of star formation, an equation of state is however not neces-
sary. The simplest method, which can be sufficient for simulations that reach very
high densities, is to have a density cut above which gas gets instantly converted
into stars, see for example Schaye (2004). For models of star formation, a broad
range of observations exist to create an empirical model for where stars can form.
Specifically, the model described by Schaye & Dalla Vecchia (2008) uses the rela-
tion between star formation rate surface density and gas surface density observed
by Kennicutt (1998) to prescribe the level of star formation as a function of the
pressure of the gas. In this case, each gas particle that has a high enough density
is assigned a star formation rate based on its pressure. Every time-step of the sim-
ulation the gas particles can then be stochastically converted into a star particle
based on this star formation rate. The formation of star particles also naturally
helps with the runaway collapse problem as very high density particles will be
converted to stars. Star particles are usually treated as collisionless particles.
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1.2.8 Feedback in hydro simulations

In cosmological simulations, the models that have the most impact, given their
uncertainties, are models for feedback. The main feedback processes are stellar
feedback, originating from young stars, and AGN feedback, originating from ac-
creting supermassive black holes. They are called feedback models because these
models are responsible for regulating the growth of galaxies. When a galaxy has
a lot of gas, this will lead to an increase in star formation and/or black hole accre-
tion. Without feedback, these processes wouldn’t stop until the galaxy runs out
of gas. Due to feedback, either in the form of supernovae or radiation and jets
from AGN, these processes are regulated as gas is heated and transported out of
the galaxy before it can lead to more star formation and black hole accretion. As
the amount of feedback is directly proportional to the amount of star formation
and black hole accretion, this causes the galaxy to go trough "feedback loops".
In each of these loops star formation increases until enough supernovae go off to
stop it again, after which either the gas that got heated by the supernovae slowly
cools again, or when the ejected gas is replaced by newly accreted gas, repeating
the cycle. A similar loop exists for supermassive black holes. In the following
paragraphs both types of feedback will be described in detail.

To implement methods of feedback, the first central question is a numerical
one. Both supernova and AGN feedback are characterised by violent behaviour
on short timescales. As detailed earlier, feedback happens when a galaxy accretes
a lot of gas. Feedback is thus more likely to happen when gas is very dense. Nu-
merically, dense gas is most susceptible to undergo a "cooling catastrophe" (see
Dalla Vecchia & Schaye, 2012). For both forms of feedback, if the energy that
is added to the gas is coupled too gently, for example when the energy is added
continuously at each time-step, it is likely that all the feedback energy is simply
radiated away before doing any work. Note that this is mostly a resolution effect
caused by relatively long timesteps. Many simulations therefore opt for inject-
ing feedback energy in large stochastic bursts. Alternatively, the gas particles
used for feedback can be decoupled from the hydrodynamics until they leave the
galaxy. Here, the lower density CircumGalactic Medium (CGM) allows for much
more efficient feedback. Another option is to temporarily suppres their cooling
rates.

Let’s first discuss supernova feedback and how it’s implemented. The two
main methods of transferring energy are via kinetic or thermal feedback. When
the resolution gets very high, the choice doesn’t matter, as the shock created when
the energy is injected will equilibrate to the Sedov-Taylor solution. At this point it
is important to take a moment to realise that for most cosmological simulations,
supernova feedback does not work with single supernova. Instead, a stellar par-
ticle represents a population of stars and, based on the initial mass function, each
particle injects the energy of a population of supernovae. This means that for the
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lower-resolution simulations, supernova feedback has to describe how collections
of supernovae couple to the rest of the galaxy.

When it comes to implementing this sort of feedback, both the total amount
of energy that is injected, and the amount of energy that is put into a single (nu-
merical) energy injection, are parameters. In the simplest model a stellar particle
dumps the energy into a neighbouring gas particle or cell. For thermal models,
the energy per injection is set by the change in internal energy, often charac-
terised by the temperature jump ∆T , see for example the work by Dalla Vecchia
& Schaye (2012). For kinetic models it is characterised by the change in veloc-
ity, often denoted as ∆vkick (Dalla Vecchia & Schaye, 2008). In both cases the
chosen value in large part sets the efficiency of the energy injection. For values
that are too low, the energy is dissipated before it can do any work. For large
values, the feedback becomes more rare, giving more time for the gas to cool in
between events or a single effect can completely destroy a galaxy. While arguably
less physical, it is also possible to decouple the gas particles from the hydro until
they reach the CGM, this is the method employed by Pillepich et al. (2018). At
the lower CGM densities the feedback is much more efficient. For more complex
models like the upcoming COLIBRE simulation, mixes of kinetic and thermal en-
ergy are use to drive both galactic outflows, and turbulence in the ISM (Chaikin
et al., 2022).

When it comes to the total energy injected, there is a large amount of variety.
At lower resolutions a single fixed energy usually suffices (Schaye et al., 2010;
Kaviraj et al., 2017; Hirschmann et al., 2014; McCarthy et al., 2017; Schaye et al.,
2023). However, for both numerical and physical reasons, the energy can bemade
a function of the properties of the halo/gas that is being shocked. For the Illus-
trisTNG model the energy depends on the velocity dispersion of the dark matter
halo and redshift Pillepich et al. (2018). For the EAGLE model the energy is a
function of both the metallicity and birth density of the stellar particle Schaye
et al. (2015). These models also introduce additional parameters. We will discuss
the calibration of free parameters in the next section.

The injection of AGN feedback energy into the gas has similar problems to
supernova feedback. However, before a black hole can become an AGN and do
feedback, it first needs to be seeded and grow via accretion and mergers with
other black holes. The amount of feedback produced by an AGN is tied to its
mass. Before an AGN can become dominant, it will first have to grow from a
small seed to a mass that is large enough to start injecting feedback energy.

In order to seed black holes, most simulations frequently run a halo finder
during the simulation (Springel et al., 2005b). When a halo is above a certain
mass, and does not already have a black hole, a black hole is seeded in its cen-
ter. The halo mass for seeding black holes and the black hole mass that is seeded
are both free parameters. Both parameters have an influence on how quickly the
black hole can grow. When black holes are small, one of the main growth mech-
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anisms is via mergers with other black holes. In the perfect case, the dynamics of
the black holes are resolved. However, in cosmological simulations the mass of
the black hole particles is usually similar to or smaller than the other particles.
This means that dynamical friction is not properly resolved by the simulation.
Therefore black hole might wander too much within the galaxy and mergers may
not happen on realistic timescales. To counter this, black holes are often explic-
itly repositioned to keep them at the centers of galaxy. This can have a big effect
on the growth of black holes and the efficiency of their feedback (see e.g. Bahé
et al., 2022, and references therein).

The other channel for black hole growth is via gas accretion. For hydro sim-
ulations for cosmology, the black hole is usually assumed to accrete gas mostly
trough hot accretion. This is described by Bondi-Hoyle accretion

ṁaccr =
4πGc2m2

BHρ(
c2s + v2BH

)3/2 , (1.4)

where G is the gravitational constant, c is the speed of light, mBH is the mass of
the black hole, ρ is the gas density around the black hole, cs is the local speed of
sound and vBH is the black hole velocity. One of the most important aspects of
this accretion channel, is that it scales as the square of the black hole mass. This
implies that when black holes get more massive, they are able to grow quadrati-
cally faster at a constant background density. Hence, when a black hole gets big
enough, accretion-driven growth becomes more important than mergers.

In order to calculate the accretion rate of the black hole, there are a few ad-
ditional models that are different from Bondi-Hoyle accretion. These can go
from an angular momentum limiter, like the one used in the EAGLE simula-
tion (Schaye et al., 2015), to direct accretion in very high resolution simulations
(Anglés-Alcázar et al., 2021). For simulations at relatively low resolutions and
simulations that employ an equation of state, the gas around the black hole may
not be able to reach sufficiently high densities for the black hole to accrete effi-
ciently. In that case Booth & Schaye (2009) describe that it might be preferred to
add a boosting factor to Bondi-Hoyle accretion. This takes the form of

α =max

( nH
nH,∗

)βBH
,1

 , (1.5)

where nH is the hydrogen number density of the gas, nH,∗ is the hydrogen number
density above which star formation is allowed and βBH is a free parameter. The
boost at high densities allows the black hole to accrete as if it is in a cloud of much
higher density, allowing the black hole to grow on a more realistic timescale.

A fraction of the mass that is accreted onto the black hole is used to fuel
AGN feedback. For AGN feedback the numerical problems are similar to those
described for stellar feedback. Catastrophic overcooling has to be accounted for.
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Compared with supernova feedback, AGN feedback is often implemented with
more energetic effects, and it therefore also acts on larger scales. Similarly to
supernova feedback, energy is distributed kinetically or thermally. A single mode
of feedback can be sufficient, see for example both EAGLE (Schaye et al., 2015)
and BAHAMAS (McCarthy et al., 2017). However, there are implementations
that use multiple modes of AGN feedback, based on how close to the Eddington
rate the black hole is accreting. In these models, used for example in SIMBA
(Davé et al., 2019) and IllustriTNG (Pillepich et al., 2018; Pakmor et al., 2023;
Nelson et al., 2023), the feedback is split up into two modes, usually referred to
as jet mode at low accretion rates, and quasar mode at high accretion rates. In
jet mode the AGN energy is often injected kinetically, along the axis of angular
momentum of the black hole (Huško et al., 2022). In quasar mode, the energy
is injected either thermally on kinetically, but isotropically to mimic a strong
radiation field emanating from the black hole. Much like supernova feedback,
these numerical recipes come with free parameters, the number depending on
the complexity of the model, that need to be calibrated.

1.2.9 Calibration of hydro simulations

If there is one thing that should be clear from the previous sections, it is that
there are not only many methods for each subgrid model, but additionally each
subgrid model contains uncertain parameters that we cannot constrain from first
principles. Therefore, when preparing to run large hydrodynamic simulations,
care has to be taken to make sure the subgrid models are tuned in a way that
the simulation is able to reproduce some relevant observational data. This sort of
approach was applied to semi-analytic models (see e.g. Bower et al., 2006) before
it was applied to hydro simulations (Schaye et al., 2015; Crain et al., 2015).

Depending on the goal of the hydro simulations, different observables are
chosen as calibration targets. For galaxy formation simulations, properties like
galaxy sizes and star formation rates are more important than for hydro simu-
lations that investigate cosmological inference.For cosmology, the priorities are
the properties of the gas in and around clusters, and ensuring that galaxies of a
certain stellar mass occupy halos with the correct mass via the stellar mass func-
tion. In choosing the data to use for calibration, there are a few considerations to
take into account. Some observables might look very promising for calibration,
but they are observationally not very constrained. A good example is the stellar-
mass-halo-mass relation. In theory constraining this relation would lead to the
most constraining results. However, the stellar mass function is much better con-
strained observationally, so it is a better target. Similarly, for clusters, the baryon
mass fraction would be much more constraining than the gas mass fraction, but
much more data exists for the gas fraction, making it the better choice.

It is in the attempt of matchingmany observables that we learn themost about
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our subgrid models. Inconsistencies, degeneracies between astrophysical pro-
cesses and observables that we cannot match provide the biggest gateway into
improving our models and hence our understanding of the physics of structure
formation. It goes without saying that a model has to be robust to trust its pre-
dictions. This also makes it interesting for different simulation projects to take
different approaches. Seeing how the differences between approaches manifest
themselves when comparing predictions contains a wealth of information.

The differences in approaches come with changes in calibration targets, the
resolution, box size and subgrid physics. Each can vary greatly between differ-
ent simulations. One of the goals of some of the earlier simulations, like OWLS
(Schaye et al., 2010), was to investigate the effects of the different subgrid models
on, for example, the cosmic star formation history. Many higher resolution sim-
ulations focus on galaxy formation and evolution with different approaches and
methods. EAGLE (Schaye et al., 2015), FABLE (Henden et al., 2018) and SIMBA
(Davé et al., 2019) make use of SPH, HorizonAGNmakes use of adaptive mesh re-
finement (Kaviraj et al., 2017) and IllustisTNGmakes use of a moving mesh code
(Pillepich et al., 2018). None of those simulations investigate the multiphase ISM,
this is one of the main goals of the FIRE box simulations (Feldmann et al., 2023).
To investigate clusters and groups of galaxies, it is necessary to simulate a large
volume, at the cost of a lower resolution. This is the approach of simulations like
Magneticum (Hirschmann et al., 2014), BAHAMAS (McCarthy et al., 2017) and
the higher res MilleniumTNG (Pakmor et al., 2023).

One of the ways to investigate higher mass objects at a high resolution is to
make use of cosmological zoom simulations. For these simulations a full cos-
mological volume is simulated, but only a very small fraction of the box is run
at a high resolution. This approach can be used for Milky way galaxies, like in
the APOSTLE project (Fattahi et al., 2016) and Auriga (Grand et al., 2017), but
also for groups and clusters like in C-EAGLE (Barnes et al., 2017b) and Hydranga
(Bahé et al., 2017). One disadvantage of the zoom approach is that you are limited
to a small number of hand selected objects, making it impossible to look at things
like selection effects. One recent approach to partially circumvent this is to do a
zoom for many objects obtained from a single large volume, like for example the
MACSIS simulations (Barnes et al., 2017a), the Three-hundred simulations (Cui
et al., 2018) and ClusterTNG (Nelson et al., 2023).

The final simulation method, which has not yet been maximally explored but
will likely become much more popular in the future, is to run suites of simu-
lations for machine learning, much like how emulators are currently becoming
more wide-spread for dark matter only simulations. The biggest example is the
CAMELS suite of simulations (Villaescusa-Navarro et al., 2021), that has many
thousands of variations of subgrid physics parameters, cosmology and numerical
methods, but restricted to a small volume. The ANTILLES suite (Salcido et al.,
2023a) also has many variations of subgrid physics parameters. As demonstrated
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Figure 1.6: Ratio of the power-spectrum between full hydro simulations and the
corresponding dark matter only simulations as a function of scale. The different
lines show a large number of results of different hydro simulations. The blue
region and the red lines are obtained from the HMCode (Mead et al., 2021) im-
plementation of baryonic suppression. Plot taken from Bigwood et al. (2024).

by Brown et al. (2024), emulators can also be used to increase the interpretabil-
ity of subgrid models. Emulators also form the basis of the calibration of the
FLAMINGO simulations (Schaye et al., 2023), which is detailed in the next chap-
ter of this thesis.
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1.2.10 Baryons and cosmology

A lot of hydro work is done on galaxy formation. For cosmology, one of the main
results of hydro simulations is that baryons often cannot be ignored for cosmo-
logical inference. One of the main effects is what is referred to as baryonic sup-
pression. Because of AGN feedback in groups and clusters, gas is pushed out of
groups, and the gas around clusters is heated to higher pressures, limiting the
gas accretion rate. This leads to the matter distribution being "washed out" at
scales of the order of a Megaparsec. Compared to dark matter only simulations,
this leads to suppression of power, or in other words, a decrease in clustering on
these scales. Because the baryons decrease the clustering in the late universe, this
is seen as one of the candidate processes to explain the σ8 tension. If baryonic
suppression is powerful enough, it would bias the lensing surveys to find a lower
σ8 when compared to early universe measurements. This effect is shown as pre-
dicted by a large range of simulations in Fig. 1.6. As is clear from the figure, there
is no clear estimate of how strong this effect should be.

It is however very clear that there is an effect, as the effect is not only predicted
by hydrodynamical simulations (see e.g. Van Daalen et al., 2011; Semboloni et al.,
2011, 2013), but also by by analytical models constrained by observations (De-
backere et al., 2020). In order to model baryonic effects many approaches can be
taken. From analytical fits (van Daalen et al., 2020; Mead et al., 2021), to baryoni-
fication algorithms applied to dark matter only simulations (Chisari et al., 2019;
Aricò et al., 2021; Giri & Schneider, 2021), or emulators (Salcido et al., 2023b).
In many of these models, the strength of the effect can be related to the baryon
content in high mass haloes. As shown by van Daalen et al. (2020), the baryon
fraction is a good probe for the level of baryonic suppression, allowing us to place
external constraints on the baryon effects on the power spectrum.

Besides effects due to baryonic suppression there are other observables, less
directly related to the power spectrum, that are sensitive to both baryons and cos-
mology. A prime example is the thermal SZ effect, which, as shown by McCarthy
et al. (2018) is mostly sensitive to cosmology on large scales, but on the smaller
scales baryons and neutrinos can have a big effect. The same is true for kSZ
profiles (see e.g. Bigwood et al., 2024). However, in simulations, current X-ray
measurements of the baryon properties of clusters and groups, and predictions
for gas properties, clustering, lensing, thermal SZ and kinetic SZ are in tension.
This tension might be partially due to σ8 but there are hints towards a tension
between baryonic observables as well.

1.2.11 The FLAMINGO simulations

Currently what would be extremely informative for the field is large-volume full-
hydro simulations that explore potential systematic effects that our cosmological
probes are sensitive to. This is the main goal of the simulations constructed and
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used in this thesis: The FLAMINGO2 simulations. The two biggest simulations
are a (2.8 Gpc)3 simulation with 50403 gas resolution elements, leading to a reso-
lution of 1.09×109 M⊙, and a (1 Gpc)3 with 36003 resolution elements, leading to
a resolution of 1.34× 108 M⊙. The (2.8 Gpc)3 simulation is currently the biggest
cosmological hydrodynamics simulation that reached z = 0. One of FLAMINGO’s
defining features is the systematic variations that are done in the (1 Gpc)3 vol-
ume. In this volume the resolution is varied up and down by a factor eight, the
cosmology is varied, including specific variations in the neutrino mass, the feed-
back is varied according to systematic shifts in the observables that where used
for calibration, and there are runs with an alternative model for AGN feedback.

In addition to having many variations, FLAMINGO has a large set of out-
puts. Most notably these include full-sky lightcones that where produced while
the simulation was ongoing. The lightcones come in two forms, maps of certain
shells in redshift up to high z, and a full particle lightcone up to the redshift
where the volume starts to repeat on itself, and up to even higher z for hot gas
particles. This also includes a halo lightcone, with which the locations of halos
in the volume can be aligned with the lightcone maps and particles. This gives
many opportunities to forward model observations and make a direct compari-
son to simulated quantities. Additionally there are the standard simulation out-
puts, like finely spaced snapshots of all the particles and halo catalogs for each
of them calculated using the code SOAP3. The use of SOAP, also allows for easy
comparison between different halo finders, which include VELOCIraptor (Elahi
et al., 2019) and HBT (Han et al., 2012). The simulation outputs also include
X-ray luminosities for every particle, described by Braspenning et al. (2023), that
are consistent with the cooling in the simulation.

For its subgrid models FLAMINGO uses an evolution of the subgrid mod-
els used for OWLS (Schaye et al., 2010) and BAHAMAS (McCarthy et al., 2017,
2018). It has models for radiative cooling (Ploeckinger & Schaye, 2020), star for-
mation (Schaye & Dalla Vecchia, 2008), stellar mass loss (Wiersma et al., 2009),
supernova feedback (Chaikin et al., 2022), black hole seeding and accretion (Bahé
et al., 2022) and for thermal (Booth & Schaye, 2009) and kinetic jet-like AGN
feedback (Huško et al., 2022). While the models are all similar in spirit to ear-
lier simulations, nearly each one of them has received updates when compared
with previous work. The calibration of the subgrid physics is done using machine
learning, which is the topic of the next chapter of this thesis, so more details can
be found there.

The FLAMINGO simulations have already lead to some remarkable results.
The calibrated model of FLAMINGO has less baryonic suppression than BA-
HAMAS, especially at scales around and slightly below k ≈ 1Mpc−1 (Schaye et al.,

2Full-hydro Large-scale structure simulations with All-sky Mapping for the Interpretation of
Next Generation Observations.

3Spherical Overdensity and Aperture Processor, https://github.com/SWIFTSIM/SOAP
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2023). FLAMINGO also predicts that for reasonable variations in the subgrid
physics, the baryonic effects are not strong enough to resolve the σ8 tension in
lensing or SZ (McCarthy et al., 2023). The same can be said for the effect of mas-
sive neutrinos, while they have some impact, the total effect needed requires a
neutrino mass that is larger than current constraints allow (Elbers et al., 2024).

1.3 Galaxy Cluster Cosmology

The final part of this introductory chapter concerns whatmany say are the biggest
bound objects in the Universe, galaxy clusters. Unfortunately, that description is
not quite correct, and a better description is the largest virialised objects in the
Universe. As expected from hierarchical structure formation, they are also the
last objects to form. Therefore, galaxy clusters are a powerful tool to explore both
the cosmological parameters and galaxy formation. The study of galaxy clusters
typically concerns objects of a massM500c

4> 1014 M⊙, though with the increasing
sensitivity of current surveys, more and more objects at lower masses are also
being considered. Objects with masses in the range 1013 M⊙ < M500c < 1014 M⊙
are typically refereed to as galaxy groups.

As galaxy clusters are such extreme objects, observations of single clusters
have also made a huge impact, especially when it comes to our thinking about
dark matter. The first detection of a dark matter signature originates from ob-
servations by Zwicky (1933) of the Coma cluster. When comparing the observed
mass of Coma with the velocity dispersion of the galaxies inside Coma, there was
a large inconsistency between the two measurements when the dispersion would
be due to virialisation, hinting at a dark matter accounting for additional gravity.
Another big dark matter discovery was found via the bullet cluster (Clowe et al.,
2006). The bullet is a merging cluster. By observing the cluster in both X-rays for
the gas, optical for the stars, and by making use of weak lensing to reconstruct
the mass distribution, the authors found a clear dark matter signal originating
that was separated from the gas, where the bulk of the baryonic mass lies.

To understand how galaxy clusters can be used to infer cosmology, we must
make the connection to the halo mass function (HMF). The HMF characterises the
number of clusters per unit volume and mass. The expected shape of the HMF
is a power-law, with an exponential turn-off at the highest masses. The HMF is
very sensitive to the underlying cosmological parameters. Especially at the high
mass end, at galaxy cluster masses, small changes in the clustering (via σ8) or in
the matter content (via Ωm) can lead to large changes in the HMF. Additionally,
as clusters form relatively late, they are also sensitive to changes in dark energy.

4M500c is defined as the mass inside a spherical aperture where the average matter density is 500
times the critical density of the universe.
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Figure 1.7: Full sky maps of Compton-Y in the FLAMINGO simulation. The
figure shows a few individual shells and how they add up to the full signal up to
z = 5. Figure taken from Schaye et al. (2023).

When observing clusters, with the exception of when we use lensing, we can-
not directly observe their masses. Instead, we have to resort to using a mass-
observable scaling relation. By making use of the scaling relation we can turn
an observable mass proxy back into a mass, and then infer the underlying HMF.
With clusters being such extreme objects, they can be observed across the en-
tire electromagnetic spectrum. Some examples are: via radio (van Weeren et al.,
2019), via the SZ effect (Sunyaev & Zeldovich, 1972) on the cosmic microwave
background, via detecting cluster members in the optical (Rykoff et al., 2014,
2016; Black & Evrard, 2022), via X-rays (Pierre et al., 2016; Liu et al., 2022; Bulbul
et al., 2024) and directly from weak lensing (Costanzi et al., 2019). A map of the
SZ effect from the FLAMINGO simulation is shown in Figure 1.7, the clusters are
clearly seen as large overdensities in the map. To get unbiased inference of cos-
mological parameters, each observable needs a well constrained mass-observable
scaling relation, and we need a good grip on the selection effects inherent to each
observable.

This section of the introduction will provide an overview of current con-
straints, selection effects found in cluster samples, how cluster counts are mod-
elled and finally an outlook on the future.
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1.3.1 Current constraints

In the last few years, many new surveys have released their cluster catalogues,
and many have released cosmological constraints along with their catalogues.
With the rapidly increasing sample sizes, and the ability to simulate ever in-
creasing volumes, this is an exiting time to work on galaxy clusters, and cluster
cosmology. While cluster cosmology can not yet reach the accuracy of the lensing
and clustering surveys, it is becoming a competitive alternative. When it comes
to large, recent cluster surveys this thesis focuses on surveys based on optical,
X-ray and SZ selections.

Galaxy richness selection In galaxy clusters, the bulk of the mass is found in
dark matter and gas. Therefore, in the optical, that is mostly sensitive to the stel-
lar light, we cannot directly probe the majority of the mass. The observable that
is most closely related to the mass is the number of satellite galaxies associated to
the cluster. This is referred to as the galaxy richness, often denoted with λ. While
the counting of galaxies might seem straightforward, there are many effects that
make it difficult to accurately assign satellites to the correct center. The first
complication is that spectroscopic samples are much more difficult to obtain, so
members often have to be identified using photometric redshifts. Additionally,
there are many fore and background galaxies that might contaminate the signal.

The most often used solution is to try and model all these effects simultane-
ously, and create a Bayesian likelihood for each cluster that gives the most likely
value of galaxy richness for each cluster. This method is known as Redmapper
(Rykoff et al., 2014, 2016). Redmapper directly models the background galaxies,
the galaxy red sequence and the number of member galaxies in a aperture whose
size depends on the galaxy richness. by making use of the red sequence it can
use the photometric data of each galaxy to decide whether the object is truly part
of the cluster. Additionally field galaxies are usually found in the blue cloud.
For the complete statistical sample, this also allows Redmapper to self-calibrate
its photometric redshifts, as it models the red sequence as a function of redshift
simultaneously. Redmapper has been applied to the SDSS data (Rykoff et al.,
2014), DES verification data (Rykoff et al., 2016) and DES year 3 data (Pereira,
2021). The SDSS and DES year 3 have also used the RedMapper samples to con-
strain cosmology. In both cases, the samples need an additional calibration step
to constrain the mass-observable scaling relation. For the cosmology from the
SDSS sample, this has been done using both X-ray calibration (Kirby et al., 2019)
and calibration using weak lensing (Fumagalli et al., 2024). A lensing approach to
the calibration is also used for the DES year 3 results (Pereira, 2021). The cosmo-
logical constraints found using these samples are in agreement with the results
from the Planck survey, though they are not constraining enough in general to
find discrepancies at the level of the current S8 tension.
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X-ray selection X-ray selected cluster samples are usually based on a flux cut. In
this case the survey instrument sweeps a certain region of the sky, and all objects
that fall above that flux cut are included in the cluster sample. The X-ray photons
that are detected originate from the very high temperature intracluster medium
(ICM). One of the advantages of using X-rays is that the X-ray emission can also
be directly used for calibration of the mass-observable scaling relation. Via the
assumption of hydrostatic equilibrium, the mass can be directly estimated from
the temperature and density profiles (see e.g. Sarazin, 1988). While real clusters
not being in hydrostatic equilibrium does lead to a biased estimate of the mass
(see e.g. Hoekstra et al., 2015; Eckert et al., 2016; Smith et al., 2016), this is an
effect that can be accounted for when inferring cosmological parameters. Besides
making a statistical inference, we can use lensing measurements, to directly infer
the value of the hydrostatic bias from observations.

There are many X-ray surveys that have counted the number of clusters on
the sky. The survey area and depth have improved by orders of magnitude. The
earlier surveys like ROSAT (Rosati et al., 1998; Ebeling et al., 1998) had of the
order of a hundred objects. Currently surveys with that number of objects, like
the HSC-XXL survey Eckert et al. (2016); Akino et al. (2022) are able to go much
deeper, and also probe lower mass objects. The eROSITA equatorial Final Depth
Survey (eFEDS), goes very deep and includes around 550 clusters (Liu et al.,
2022). The biggest current X-ray survey originates from the eROSITA all sky
survey (Bulbul et al., 2024) that contains over twelve thousand individual ob-
jects. With these huge samples, cosmological constraints from cluster cosmology
are able to get much tighter.

Nearly all of these surveys have also been used to constrain cosmology. How-
ever, the methods used to constrain the mass-observable scaling relation have
changed over time. For the cluster cosmology with ROSAT, hydrostatic equilib-
rium was assumed to connect masses to temperature, which was then connected
to a luminosity using observed scaling relations (Borgani et al., 2001). Similar
scaling relations are used by Garrel et al. (2022), however, they are either cali-
brated using their own sample, or left as a free parameter. Both eFEDS (Chiu
et al., 2023) and eROSITA (Ghirardini et al., 2024) make use of overlap with
weak lensing surveys to calibrate their mass-observable scaling relations. At this
point the large X-ray survey samples are able to put good constraints on the cos-
mological parameters, close to the level of Planck CMB for Ωm and σ8.

SZ Selection The last method we will discuss is detecting clusters via their Sun-
yaev & Zeldovich (1972) signal. As CMB photon propagate the universe, they
might interact with free, high energy, electrons trough inverse Compton scat-
tering (referred to as the SZ effect). This effect scales directly with the electron
pressure, which is very high at the centers of galaxy clusters. The SZ effect leaves
a distinct spectral distortion in the CMB, which can be used to detect clusters.
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In particular, by making use of a matched filter, clusters are detected by finding
the exact spectral distortion among CMB maps at different frequencies. Because
clusters have similar pressure profiles (Arnaud et al., 2010), they have a clear ex-
pected spacial and frequency signal. By using the expected signal in a matched
filter approach, sources can be extracted, evenwhen the signal is very faint (Melin
et al., 2006, 2012). The SZ effect does not depend on redshift, even in projection,
making it also sensitive to picking up clusters at high-z.

Whenever the CMB is detected at multiple frequencies, it is also possible to
try and detect clusters via the SZ signal. The largest SZ cluster catalogues orig-
inate from the Planck satellite (Planck Collaboration et al., 2014, 2016b), the
South Pole Telescope (SPT) (Bleem et al., 2024) and the Atacama cosmology tele-
scope (Hilton et al., 2018, 2021). With these advances, the number of SZ detected
sources has gone from a hundred with Planck, to thousand(s) with SPT and ACT.
From these cluster samples it is possible to constrain cosmology. The results from
the Planck SZ clusters (Planck Collaboration et al., 2016a) find a slight discrep-
ancy in cosmological parameters with the primary CMB. This discrepancy is not
found with the SPT clusters (Bocquet et al., 2024). The Planck cluster cosmol-
ogy made use of a scaling relation calibrated using hydrostatic masses, and their
analysis acounts for the hydrostatic bias, while the SPT cluster cosmology made
use of a weak lensing calibration.

While SZ is a very clean and powerful method for the selection of clusters,
it does have several drawbacks. One of the effects is source confusion. Also,
when calculating the SZ signal it is important to take into account foregrounds
as their spectral features might be wrongfully identified as clusters. Foregrounds
include dust in clusters (Melin et al., 2018) and the cosmic infrared background
(Zubeldia et al., 2023). Because the signal is already quite weak, these foreground
effects add additional difficulty when selecting galaxy clusters.

1.3.2 Selection effects

In order to obtain clean samples with each selection method, it is important to
have a good idea of systematics and biases introduced by the selection. Obser-
vationally, there have been many comparisons between samples with different
selection methods, and clear differences have been found.

Lovisari et al. (2017) use X-ray observations to investigate the morphology of
SZ selected clusters and find that they are more disturbed than X-ray selected
sources. X-ray selected clusters are instead found to have a larger fraction of
cool-core clusters. Both Rossetti et al. (2017) and Andrade-Santos et al. (2017)
find an increase in cool core fraction for X-ray samples when compared to SZ
samples. The difference is attributed to an increase in the central density for
cool core clusters, which disproportionately boosts the X-ray flux compared with
the SZ signal. However, Chon & Böhringer (2017) suggest that the differences
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between SZ and X-ray selected samples might not originate from the different se-
lection techniques, but instead they originate from differences between volume
and flux limited samples. They do this by comparing a flux and volume lim-
ited sample with X-rays. In a comparison between X-ray clusters in eFEDS and
optically selected clusters with HSC, Ota et al. (2023) find differences in the frac-
tion of disturbed objects and the slope of the luminosity temperature relation.
Marini et al. (2024) use the Magneticum simulations to investigate these effects
with mock X-ray surveys. They find that the lowest mass galaxy groups that are
detected have a bias towards being more gas-rich.

As long as these effects don’t directly influence themass-observable scaling re-
lation, they will only have a moderate effect on cluster cosmology. However, some
of these secondary observables, like the cluster gas fraction, are important for the
calibration of hydrodynamic subgrid physics (Semboloni et al., 2011, 2013; Mc-
Carthy et al., 2017; Debackere et al., 2021; Giri & Schneider, 2021; Salcido et al.,
2023b), and hence using biased samples might lead to unrealistic calibration,
hampering our ability to use these constraints to make predictions for baryonic
effects on cosmology.

In order to investigate potential selection biases for cosmology, one can com-
pare scaling relations found in the same field for multiple selection methods.
Willis et al. (2021) highlight how some of the morphological selection criteria
can be influenced by the XMM point spread function and lead to sources being
undetected in X-rays when comparing the XMM Newton XXL X-ray selected sur-
vey and HSC optically selected survey. When comparing SDSS optically selected
clusters with the X-ray selected XMM cluster survey, Giles et al. (2022) find dif-
ferences in the scatter of the LX −λ relation between the samples. Furthermore,
the fits of the TX − LX relation are found to be sensitive to the selection method.
As scaling relations directly affect the cluster counts, this indicates that different
selections might lead to using a biased mass-observable scaling relation. Grandis
et al. (2021) indicate that biases due to contamination by smaller haloes might
start playing a big role for eROSITA and SPT.

1.3.3 Models for cluster cosmology

If the observations have a well defined selection, the important final step is to
create a robust model to compare the observed counts with. This comes down
to two components, the HMF, which tells us the expected number of haloes, and
an observable-mass scaling relation with its scatter, which relates our selection
observable to a mass. By integrating over the observed volume, and accounting
for the selection function, these two quantities can be integrated over to predict
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number counts. The integral to solve is given by

N (XC) =
∫ zmax

0

∫ Asky

0

∫ Mmax

Mmin

ϕ(M,z,θ)χ(M,z,XC)
dV

dΩdz
(θ)dMdΩdz, (1.6)

where ϕ(M,z,θ) is the HMF; χ(M,z,XC) is given by the selection function and
the scaling relation and gives the probability of a cluster with mass M and at
redshift z to be observed for a given cut XC;

dV
dΩdz (θ) gives the differential co-

moving volume; and finally θ indicates the cosmological parameter vector. This
is the equation is in simplest form. Additionally, the HMF will depend on as-
trophysical parameters and survey specific selection effects will lead to further
modifications of ξ. Getting the modelling of the cluster population and selection
effects correctly is key in inferring unbiased cosmological parameters.

To make predictions for the HMF we need to turn to models that can de-
scribe it as a function of the cosmological parameters and cosmology. The HMF
has a characteristic shape, starting as a power-law, with an exponential turn-off.
The HMF of the FLAMINGO simulations is shown in Figure 1.8. A widespread
method to predict the how the HMF changes with cosmology was introduced
by Jenkins et al. (2001). By the addition of an empirical fitting formula to the
extended Press & Schechter (1974) formalism, the HMF can be computed from
predictions of the non-linear power-spectrum made by Boltzmann solvers. This
requires calibrating the empirical formula to cosmological simulations. The fit-
ting formulae used where updated by Tinker et al. (2008, 2010), which included
extensions to be able to predict the HMF for many different spherical overdensity
definitions. However, we know that the HMF is affected by astrophysical effects
(Velliscig et al., 2014; Bocquet et al., 2016; Schaye et al., 2023). To model these
effects, the Jenkins et al. (2001) method was further updated and expanded to
hydrodynamical simulations by Bocquet et al. (2016) by making use of the Mag-
neticum simulation (Hirschmann et al., 2014). They also show that there are large
differences in the inferred cosmological parameters when introducing hydro, and
also between different HMF models. Just as for other cosmological observables,
there are now also emulators of the HMF that interpolate the predictions of a
large suite of dark matter only simulations. One example of such an emulator
is the MiraTitanHMFEmulator (Bocquet et al., 2020), based on the Mira Titan
simulations (Heitmann et al., 2016).

For the scaling relation, the standard approach is to assume a power law rela-
tion between mass and the observable with lognormal scatter. These relations are
then truncated by the selection function to lead to the observed cluster counts.
The proper calibration of the scaling relation and its scatter is very important
for unbiased results (Mantz, 2019). This also includes potential redshift evolu-
tion of the relations. One method is to assume self-similar scaling (Kaiser, 1986,
1991). Most recent cluster cosmology inferences use the overlap between the sur-
vey volume and existing weak lensing surveys to calibrate the scaling relation
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Figure 1.8: The HMF from dark matter only simulation in the FLAMINGO suite
of simulations. The number density of objects per logarithmic mass bin is shown
as a function ofM200m. The different lines indicate which FLAMINGO simulation
the line is taken from. On the right y-axis, the number of objects in that bin for
the 2p8 simulation is shown. Figure taken from Schaye et al. (2023).
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(Chiu et al., 2023; Bocquet et al., 2024; Ghirardini et al., 2024). This way the
scaling relation can be constrained self-consistently within the observed volume
and simultaneously fit along with the cosmology.

1.3.4 Future surveys

With the release of the first eROSITA catalogue (Bulbul et al., 2024) and the most
recent SPT catalogue (Bleem et al., 2024) there has been a huge increase in the
available samples sizes. With upcoming surveys like Euclid and LSST, the sample
sizes of optical surveys are also likely to increase by orders of magnitude (Artis
et al., 2022). Furthermore, eROSITA has not yet reached its final depth, so in-
creases in the X-ray sample are expected soon. For SZ there are multiple upcom-
ing instruments, for example the Simons Observatory (Ade et al., 2019), which
are forecasted to push the number of observed SZ clusters to over ten thousand.

Not only will the largest numbers allow us to obtain ever tighter observational
constraints, they will also allow for a much more detailed look at the formation
and evolution of these objects. This way we will be able to learn more about
both cosmology and galaxy clusters in general. One of the main paths forward
from amodelling perspective is to carefully forwardmodel simulation results. As
the observations get more detailed, the systematics introduced by the instrument,
noise and projection will make it much harder to do apples to apples comparisons
if they are not properly forward modelled. Careful forward modelling will also
further help us understand selection effects, cluster properties, and shortcomings
of our simulations.

1.4 This thesis

This thesis will cover a range of topics relating to the setting up of subgrid physics
in hydrodynamical simulations, cluster cosmology selection and modelling, and
the large scale, cosmic web, force and tidal field.

• In Chapter 2, the calibration strategy for the subgrid physics of the
FLAMINGO hydrodynamical simulation suite is described. By making
use of Gaussian process emulation, we are able to set up emulators using
a training set of simulations where the subgrid physics is systematically
varied. By making emulators for the stellar mass function and the cluster
gas mass fraction, the subgrid physics can be fit to observations. Further-
more, we fit the emulators to systematic shifts in the observations to obtain
constrained subgrid variations that can inform us about the uncertainty in
the baryonic modelling.

• In Chapter 3, we use the FLAMINGO simulations to investigate three differ-
ent selection methods, X-ray, SZ and galaxy richness. We find that depend-
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ing on the redshift and mass of the sample of interest, different selection
methods are more or less biased with respect to a mass selected sample.
Overall, SZ selection seems to provide the most unbiased selection for all
masses and redshifts. Richness is relatively unbiased up to z = 1, but it
suffers the most from contamination by smaller haloes. We also find that
contamination to a biased temperature and gas fraction for the smallest
haloes in the sample when selecting based on SZ or X-rays.

• In Chapter 4, we assess how well standard cluster cosmology modelling
is able to recreate the results of the FLAMINGO simulations. To investi-
gate this, we create three surveys, similar to the Planck, SPT and future
Simon’s observatory SZ-selected cluster catalogues. We find that for future
surveys, baryonic effects on the HMF will need to be accounted for. Fur-
thermore, a single power-law mass-observable relation might lead to slight
biases for future surveys. Additionally, we further confirm the fact that not
all current HMF models in use have the required accuracy to reproduce the
FLAMINGO simulation, which can lead to problems even at the sensitivity
of Planck.

• Finally, in Chapter 5, we investigate the dynamical influence of the differ-
ent components of the cosmic web. By making use of the NEXUS+ cosmic
web identifier, we split both the cosmic force and tidal field into the parts
that are caused by filaments, voids, walls and nodes. Our results reveal that
the bulk of the motion in the Universe is caused by the gravitational force
exerted by filaments. However, when it comes to the smaller-scale struc-
tures, the forces are caused by the voids. Nodes only affect their immediate
environment. We thus find that filaments drive the dynamics of the cosmic
web, while voids organise its finer details.

1.5 Outlook

There are multiple interesting avenues that are still open for investigation that
would build upon the results presented in this thesis. As already highlighted
previously, the main effort should go into building forward modelling pipelines
for the cluster observables investigated in this thesis. Given the large range of
outputs generated by the FLAMINGO simulation suite, which importantly in-
cludes full-sky lightcones for many observables, forward modelling should be
relatively straightforward.

Another avenue that should be explored, is further application of emulators
for simulations. We are working on using emulators to design the baryonic vari-
ations. In this way we can create a grid of training simulations that vary both
cosmology and subgrid physics. By making use of emulators, these baryonic vari-
ations can be parameterised in terms of observable parameters, like for example
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the gas and stellar mass fraction in clusters. This will not only allow us to gain
a better understanding of the coupling between cosmology and baryons, but also
to put observational priors on the baryonic parameters when needed.

The true power will come when combining these methods. If we can cre-
ate forward modelled predictions for each of the simulations in the training set
of a baryonic cosmology hypercube, we can directly emulate the predictions for
upcoming telescopes. This might even allow us to emulate observations more
and more directly, removing the need for intermediate modelling of the observed
quantities. This will not only greatly reduce the systematics in the results ob-
tained from comparisons between theory and observation, it will also allow us to
understand better where our modelling is still lacking.
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Abstract

To fully take advantage of the data provided by large-scale structure sur-
veys, we need to quantify the potential impact of baryonic effects, such as
feedback from active galactic nuclei (AGN) and star formation, on cosmo-
logical observables. In simulations, feedback processes originate on scales
that remain unresolved. Therefore, they need to be sourced via subgrid mod-
els that contain free parameters. We use machine learning to calibrate the
AGN and stellar feedback models for the FLAMINGO cosmological hydro-
dynamical simulations. Using Gaussian process emulators trained on Latin
hypercubes of 32 smaller-volume simulations, we model how the galaxy stel-
lar mass function and cluster gas fractions change as a function of the sub-
grid parameters. The emulators are then fit to observational data, allowing
for the inclusion of potential observational biases. We apply our method to
the three different FLAMINGO resolutions, spanning a factor of 64 in particle
mass, recovering the observed relations within the respective resolved mass
ranges. We also use the emulators, which link changes in subgrid parameters
to changes in observables, to find models that skirt or exceed the observa-
tionally allowed range for cluster gas fractions and the stellar mass function.
Our method enables us to define model variations in terms of the data that
they are calibrated to rather than the values of specific subgrid parameters.
This approach is useful, because subgrid parameters are typically not directly
linked to particular observables, and predictions for a specific observable are
influenced by multiple subgrid parameters.
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2.1 Introduction

The evolution of the large-scale distribution of matter in the Universe is highly
sensitive to the underlying cosmological model. Current probes have given us
our concordance cosmological model ΛCDM, which consists of a spatially flat
universe, where dark energy and cold dark matter dominate the current energy
density (for a review see Frieman et al., 2008).

The concordance model has been independently validated by a large array
of probes. These include the cosmic microwave background (CMB) (e.g. Planck
Collaboration et al., 2020), galaxy clustering and gravitational lensing (e.g. Ab-
bott et al., 2022; Heymans et al., 2021), baryon acoustic oscillations (BAO) (e.g.
Alam et al., 2021), and more (for a review see Turner, 2022). While all the probes
broadly agree with the ΛCDM model, tensions remain between early universe
probes, like the CMB, and late-time probes, like the distance ladder and weak
lensing. For the H0 and σ8 parameters, the tension is at the level of a few stan-
dard deviations (e.g. Heymans et al., 2021; Abbott et al., 2022; Riess et al., 2022).
Next generation surveys like Euclid1 and LSST2 will measure the matter power
spectrum to per cent level accuracy (Euclid Collaboration et al., 2020). The re-
sults from these surveys will provide us with a stringent test of the concordance
model, and show us whether these tensions will force us to modify the ΛCDM
model.

Most of the modelling work for large-scale structure is done with collision-
less N -body simulations (e.g. Heitmann et al., 2016a; DeRose et al., 2021; Euclid
Collaboration et al., 2019). N -body simulations model the evolution of cold dark
matter and can accurately predict the structure and clustering of dark matter
haloes under the effect of gravity only. The dark part of the matter component
is dominant in mass and hence, predictions from these simulations may provide
stringent cosmological constraints. However, baryons change the distribution of
darkmatter through back reaction effects, but, with the exception of gravitational
lensing, we are limited to observing the imprint of the distribution of dark mat-
ter on the baryonic matter. Most of the baryonic matter is found in the tenuous
intergalactic medium (e.g. Nicastro et al., 2018; Macquart et al., 2020), which is
very challenging to observe directly. Large-scale structure surveys use galaxies,
which are located within dark matter haloes, to map the distribution of matter.

Sophisticated semi-analytical and semi-empirical models can make predic-
tions for how galaxies evolve within their dark matter haloes (e.g. Cole et al.,
2015; Lacey et al., 2016; Moster et al., 2018; Behroozi et al., 2019; Ayromlou et al.,
2021). Baryonic effects can be simulated with halo models (e.g. Semboloni et al.,
2011, 2013; Mead et al., 2015; Debackere et al., 2020; Acuto et al., 2021), added
to N-body simulations by baryonification algorithms (e.g. Schneider & Teyssier,

1https://www.euclid-ec.org/
2https://www.lsst.org/

https://www.euclid-ec.org/
https://www.lsst.org/
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2015; Giri & Schneider, 2021; Aricò et al., 2021) or included as a parametric cor-
rection to the matter power spectrum (Van Daalen et al., 2020; Salcido et al.,
2023). However, the most self-consistent way to model how the large-scale struc-
ture is coupled with baryons, is via large cosmological hydrodynamical simula-
tions. Modern simulations like Magneticum (Hirschmann et al., 2014), EAGLE
(Schaye et al., 2015; Crain et al., 2015), Horizon-AGN (Kaviraj et al., 2017), Illus-
trisTNG (Pillepich et al., 2018), BAHAMAS (McCarthy et al., 2017, 2018), SIMBA
Davé et al. (2019) and MilleniumTNG (Pakmor et al., 2022) provide predictions
for the interplay between galaxy formation and the large-scale structure. The re-
sults from hydrodynamical simulations can also inform the simpler parametric
and analytic models.

One of the main difficulties for hydrodynamical simulations is the imple-
mentation and tuning of relevant astrophysical processes that originate on un-
resolved scales through subgrid physics. Processes like star formation and black
hole growth occur on parsec scales, and are not resolved. The resulting feedback
from stars and active galactic nuclei (AGN), do influence the distribution of mat-
ter on cosmological scales (Van Daalen et al., 2011, 2020; Debackere et al., 2020;
Schneider et al., 2020). Therefore, we need to create simulations that model their
effect on the resolved scales.

Subgrid physics models are characterised by a set of free parameters, in the
sense that there is both uncertainty in the processes we try to model and uncer-
tainty in how the models are affected by numerical limitations. An example of
the latter is the impact of numerical over-cooling on galactic wind models (see
Dalla Vecchia & Schaye, 2012). The numerical effects combined with the general
non-linearity of galaxy formation makes it difficult to implement subgrid physics
based solely on first principles. Instead, we have to calibrate the model by com-
paring it to a selection of observations, a partial forfeit of their predictive power.
As argued by Schaye et al. (2015), this is a necessary sacrifice. By ensuring cer-
tain relations are reproduced, the simulation retains predictive power for other
relations. Calibrating subgrid physics forces us to find a balance between how
many observables one tries to match and how many of the results can be deemed
predictions.

In this paper we discuss the calibration strategy used for the low-,
intermediate- and high-resolution simulations of the FLAMINGO project
(Full-hydro Large-scale structure simulations with All-sky Mapping for
the Interpretation of Next Generation Observations; Schaye et al. 2023).
The intermediate-resolution FLAMINGO model has the same resolution
(mgas = 1.07 × 109 M⊙) as used for the BAHAMAS project (McCarthy et al.,
2017, 2018), but in a volume of (2.8 Gpc)3. This volume is over two orders of
magnitude larger than BAHAMAS. Additionally, FLAMINGO includes a suite
of feedback and cosmology variations in (1 Gpc)3 volumes. This includes a high
(mgas = 1.34 × 108 M⊙) and a low (mgas = 8.56 × 109 M⊙) resolution variation.
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Our goal is to expand the large-scale structure science of the BAHAMAS project
to larger volumes, different resolutions, and more cosmology and astrophysics
variations with a new code and an improved subgrid physics model. The
FLAMINGO simulation outputs also include on-the-fly full sky lightcones, both
as particles and as maps, for a variety of observables. Similarly to BAHAMAS,
we will calibrate to the observed present-day galaxy stellar mass function (SMF)
and the gas fractions in groups and clusters of galaxies (fgas). We opt for the
SMF to ensure we can reproduce galaxy clustering and lensing statistics if we
use the correct cosmology. The gas fraction is used to ensure we have a realistic
distribution of gas in and around clusters, which is not only important for
cluster cosmology, but also for baryonic effects on the matter power spectrum
(Semboloni et al., 2011; Schneider & Teyssier, 2015; Debackere et al., 2020; Van
Daalen et al., 2020; Aricò et al., 2021; Salcido et al., 2023). While our fiducial
models are calibrated to reproduce the data, we also calibrate the subgrid physics
to the gas fraction and SMF data that has been shifted relative to the observed
values. These feedback variations will enable future FLAMINGO projects to test
the importance of astrophysical effects constrained by the uncertainties in the
data.

For BAHAMAS, and also for simulations like EAGLE and IllustrisTNG, cali-
bration was done by hand by varying the subgrid parameters within some rea-
sonable range until the simulation lined up with the calibration targets. This
approach works reasonably well in the context of galaxy formation, but it intro-
duces biases into the parameter selection. For cosmology applications we require
a more systematic and controlled approach. We want to be able to sample the
parameter space with a Markov Chain Monte Carlo (MCMC) method and to find
the posterior probabilities of each of the subgrid parameter values. This approach
also allows us to take into account potential systematic effects in the data and/or
simulations.

Because N-body simulations are too computationally expensive to be used
directly in MCMC-like methods, we make use of machine learning, specifically
emulation using Gaussian processes. While it is too expensive to run a new sim-
ulation for each MCMC step, we can train an emulator on a carefully sampled se-
lection of input simulations. The emulator then gives us the predicted observable
as a continuous function of the input parameters, which can be fed into any like-
lihood calculation code. Emulator-based methods have been used in combination
with semi-analytic models of galaxy formation (Bower et al., 2010; Vernon et al.,
2014; Rodrigues et al., 2017; Elliott et al., 2021) and have become particularly
popular for cosmology. By training emulators on dark-matter-only simulations,
their full non-linear matter power spectrum can be predicted with per cent level
precision (e.g. Heitmann et al., 2009, 2016b; Euclid Collaboration et al., 2019;
Angulo et al., 2021; Moran et al., 2022).

We directly emulate our calibration targets: the SMF and the gas fractions
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in groups and clusters. This allows us to create a continuous simulation-based
model that can be compared with observations. With the emulator we can use
MCMC to directly fit the subgrid physics parameters to the observational data,
while modelling statistical and systematic errors in both the simulations and the
data. This procedure not only gives us a well-calibrated model, but also lets us
determine the maximum variations allowed by the model. In this way our re-
sulting simulations can provide upper and lower limits on the expected baryonic
effects. More general machine learning techniques have been used to calibrate
hydrodynamical simulations. Jo et al. (2023) calibrate to baryonic observables in
the (25 Mpc)3 volumes of the CAMELS project (Villaescusa-Navarro et al., 2021)
and Oh et al. (2022) apply a similar methodology to zooms of Milky Way haloes.
However, these methods have not been applied to simulations of large cosmolog-
ical volumes and they have not accounted for possible observational biases.

This paper is structured as follows. In Section 2.2 we describe the most rel-
evant aspects of our simulation method and galaxy formation models. In Sec-
tion 2.3 the reasoning for our calibration targets is explained, and we describe our
compilation of data and how we include potential observational and simulation-
originated biases in our analysis. In Section 2.4 we describe how we obtain the
training data for the emulators. We also discuss how the emulators are trained
and how we estimate the uncertainty in the predictions of the emulators. We de-
scribe our likelihoods and our fitting method in Section 2.5. In Section 2.6 we
show the results of fitting the emulators at the three FLAMINGO resolutions. We
also discuss how the emulators can be used to better understand subgrid physics
using parameter sweeps and we use the emulator to find models that skirt or ex-
ceed the observational allowed range for the cluster gas fractions and the SMF.
Finally, we summarise our method, strategy and results in Section 2.7. In this
work, R500c is defined as the radius within which the mean internal density is
500 times the critical density. The radius R500c also defines M500c, which is the
mass inside R500c.

2.2 Simulations

The simulation methods and galaxy formation model are described in detail in
Schaye et al. (2023). Here we will provide a summary of the most relevant as-
pects. We describe in more detail the subgrid prescriptions that we calibrate in
this work, namely those for stellar feedback (§2.2.1), the growth of supermassive
black holes (§2.2.2), and AGN feedback (§2.2.3), and we will motivate the choice
of priors for the subgrid parameters that are varied (these are listed in Table 2.2).

All simulations in this work use the open-source code Swift (Schaller et al.,
2023). Swift is an N-body gravity and smooth particle hydrodynamics (SPH)
solver that makes use of a fine-grained tasking framework and runs across multi-
ple compute nodes using MPI. Gravity is solved using the Fast Multiple Method
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Table 2.1: Numerical characteristics of the final Latin hypercubes of simulations.
The columns list: the resolution qualifier, comoving box size, number of parti-
cles (there are initially equal numbers of dark matter and baryonic particles),
initial baryonic particle mass, dark matter particle mass, comoving gravitational
softening length, maximum physical gravitational softening length.

Resolution L N mg mDM ϵcom ϵprop
(cMpc) (M⊙) (M⊙) (ckpc) (pkpc)

Low [m10] 400 2× 3603 8.56× 109 4.52× 1010 44.6 11.40
Intermediate [m9] 200 2× 3603 1.07× 109 5.65× 109 22.3 5.70
High [m8] 100 2× 3603 1.34× 108 7.06× 108 11.2 2.85

(Greengard & Rokhlin, 1987). We use the Sphenix SPH scheme (Borrow et al.,
2022b) with a Wendland (1995) C2 kernel. Massive neutrinos are implemented
into Swift via the δf method of Elbers et al. (2021).

Initial conditions are generated using amodified version ofmonofonIC (Hahn
et al., 2021) that includes massive neutrinos. We use unperturbed initial condi-
tions for the neutrino particles. We do not include large scale neutrino pertur-
bations in the initial conditions, as these have a negligible effect in the small box
sizes used for this work. We adopt the ’3x2pt + all’ cosmology from Abbott et al.
(2022) (Ωm = 0.306, Ωb = 0.0486, σ8 = 0.807, H0 = 68.1, ns = 0.967) with a min-
imal neutrino mass of 0.06 eV. The particle masses and gravitational softening
lengths corresponding to the three different resolutions that we will consider are
listed in Table 2.1.

For simulations with volumes as large as FLAMINGO, it is currently impossi-
ble to resolve all the processes that are important for galaxy formation. Therefore,
we make use of subgrid models. FLAMINGO builds upon the models of OWLS
(Schaye et al., 2010), used for Cosmo-OWLS (Le Brun et al., 2014), BAHAMAS
(McCarthy et al., 2017), and EAGLE (Schaye et al., 2015), ported from the code
gadget (Springel, 2005) to Swift.

We use the radiative cooling tables from Ploeckinger & Schaye (2020), which
are based on photo-ionisation models run with cloudy (Ferland et al., 2017) that
include both the metagalactic and interstellar radiation fields, and that account
for self-shielding, dust, and cosmic rays.

As we are unable to resolve the multiphase interstellar medium, we follow
Schaye & Dalla Vecchia (2008) and impose a temperature floor. The pressure of
gas with hydrogen number densities nH > 10−4 cm−3 and an overdensity greater
than 100 is limited from below to P /kB = 800 K (nH/10−4 cm−3)4/3, where kB is
the Boltzmann constant.

During the simulation gas particles can be stochastically converted into star
particles following the description of Schaye & Dalla Vecchia (2008). Particles
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with total hydrogen number density3 nH > 10−1 cm−3, an overdensity > 10 and
within 0.3 dex of the temperature floor are stochastically allowed to convert into
stars with a probability given by the particle’s star formation rate,

ṁ∗ =mgA(1 M⊙pc
−2)−n

(γ
G
fgP

)(n−1)/2
, (2.1)

wheremg is the gas particle mass, γ = 5/3 is the adiabatic index, andG is the grav-
itational constant. The star formation rate is derived such that self-gravitating
discs reproduce the observed Kennicutt-Schmidt relation (Kennicutt Jr., 1998;
Kennicutt Jr. et al., 2007). We assume the gas fraction, fg, is unity, A = 1.515 ×
10−4 M⊙ yr−1 pc−2, and n = 1.4.

For the low-resolution simulation we were forced to relax the star formation
parameters, as the default prescription was unable to form enough stars, even in
large haloes and without stellar feedback. For low resolution, all particles with
density nH > 10−3 cm−3, overdensity > 10 and temperature T < 105 K are star
forming.

Each stellar particle is treated as a simple stellar population with a Chabrier
(2003) initial mass function (IMF). Following Wiersma et al. (2009), we model
stellar mass loss and track the abundances of the individual elements H, He, C,
N, O, Ne, Mg, Si, and Fe. We also include type Ia supernova with rates taken from
Schaye et al. (2015).

3Due to a bug, in the intermediate-resolution simulations gas particles with a metallicity equal
to exactly zero were only allowed to form stars at densities higher than 10 cm−3. This had little to no
effect on any results at resolved stellar masses, but it did reduce the number of stars formed in the
lowest-mass galaxies. Fixing this bug would potentially have allowed us to match the SMF to stellar
masses corresponding to fewer than 10 particles.
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Table 2.2: Priors and best-fitting values for the subgrid parameters for each of the three simulation resolutions. Low-resolution
simulations do not include stellar feedback. The rows titled ’Median+CL’ give the median and the 16th and 84th percentile
confidence level (CL) obtained from the posterior of the fits. The rows titled ’best-fitting’ list the maximum likelihood value
from the fitting, which is our fiducial value. The last row ’Log’ indicates whether the parameter is sampled logarithmically.
The best-fitting values for the jet model are listed in Table 2.8 and the priors for the jet model are listed in Table 2.9.

Resolution Parameter fSN ∆vSN log10∆TAGN [K] βBH
Prior [0.2,0.9] [80,400] [7.7,8.9] [0.0,0.9]

High-res [m8] Median+CL 0.560.15−0.12 169+87−65 8.03+0.13−0.14 0.230.20−0.15
best-fitting 0.524 259 8.07 0.038
Prior [0,0.5] [200,800] [7.5,8.5] [0.1,0.9]

Intermediate-res [m9] Median+CL 0.20+0.11−0.09 479+167−197 7.84+0.180.20 0.55+0.15−0.16
best-fitting 0.238 562 7.95 0.514
Prior - - [7,9.5] [0,3]

Low-res [m10] Median+CL - - 8.26+0.15−0.15 0.50+0.17−0.16
best-fitting - - 8.29 0.373
Log No Yes Yes No
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2.2.1 Stellar feedback

Although we will often refer to stellar feedback as supernova feedback, it may
also represent other sources of energy released by massive stars that are unre-
solved by our simulations such as stellar winds, radiation pressure or cosmic
rays.

Stellar feedback is implemented kinetically. The energy budget is normalised
to the expected kinetic energy from core collapse supernovae, assuming that each
star with a mass between 8 and 100 M⊙ injects 1051 erg of kinetic energy into its
surrounding medium. A fraction fSN of this energy is assumed to be coupled to
the ISM on scales resolved by the simulation and is used to kick neighbouring gas
particles with a target velocity∆vSN. We use themethod of Chaikin et al. (2022a)4

to inject the kinetic energy in a statistically isotropic manner while ensuring that
both momentum and energy are conserved. Note that if the relative velocities
between the star and gas particles are nonzero, energy conservation results in
differences between the actual and target kick velocities.

Following Dalla Vecchia & Schaye (2008) and Richings & Schaye (2016), we
inject the kinetic energy probabilistically during each time step after the star par-
ticle has formed. The probability that a star particle kicks a given SPH neighbour
is

pkick(fSN,∆vSN,mngb, t,∆t) = 2
fSN∆ESNII(t,∆t)

mngb∆v
2
SN

, (2.2)

where ∆ESN denotes the amount of energy released by the star particle of age t
during a time step ∆t and mngb is the total gas mass in the star particle’s SPH
kernel. The feedback efficiency, fSN, and the target kick velocity ∆vSN are the two
stellar feedback parameters that are varied during the calibration.

The effect of stellar feedback generally scales with fSN, which sets the amount
of energy that is injected. Based on the calibration of BAHAMAS (McCarthy
et al., 2017) and after some experimentation with runs in which we varied only
one parameter, we settled on prior ranges of 0.2 − 0.9 and 0 − 0.5 for high- and
intermediate-resolution, respectively. The low-resolution simulations do not re-
quire any stellar feedback at all because of the strong suppression of star forma-
tion due to the limited resolution and because galaxies in the regime where stellar
feedback dominates (stellar massM∗≪ 1011M⊙) are only sampled by≲ 10 stellar
particles.

If the kick velocity is too small, then stellar feedback ceases to be effective be-
cause of excessive radiative losses caused by the too-low post-shock temperatures
(the well-known numerical over-cooling problem, see Dalla Vecchia & Schaye,
2012) and/or because the velocities are small compared to the escape velocities.

4There is one difference w.r.t. the method described by the authors. In the case where a particle
would be kicked twice in a single time step, which we do not allow, we put the unused kick energy in
a thermal dump, instead of adding it back to the star’s feedback energy reservoir.
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The lower limits for ∆vSN are 80 and 200 km s−1 for the high- and intermediate-
resolution simulations, respectively. Our additional tests showed that for lower
velocities the kicks stopped having a significant effect.

If the kick velocity is too large, then the feedback becomes poorly sampled,
thus limiting its effectiveness. Our aim is to calibrate the SMF down to masses
corresponding to just a few stellar particles. The expectation value for the num-
ber of kicks imparted by a single stellar particle is given by Chaikin et al. (2022a)

⟨Nkicks, SN⟩ = 1.85
(
fSN
0.25

)( ∆vSN
400 km s−1

)−2
, (2.3)

where we assumed the stellar and gas particles to have the same mass. Based on
the above considerations and some small test runs, we limit the maximum kick
velocity to 400 and 800 km s−1 for the high- and intermediate-resolution simu-
lations, respectively. This implies ⟨Nkicks, SN⟩ ≈ 2 and ⟨Nkicks, SN⟩ ≈ 0.4 for high-
and intermediate-resolution respectively. There should be at least four kicks for
objects with 10 stellar particles at each resolution.

2.2.2 Black hole growth

Following Di Matteo et al. (2008) and Booth & Schaye (2009) we seed haloes with
black holes (BHs) during the simulation. Starting at z = 19 we run a friends
of friends group finder every time the expansion factor increases by a factor
1.00751. We seed a BH in every group that is above a certain mass threshold
and that does not already have a BH. We seed BHs in haloes above a mass of
2.757 × 1011 M⊙(mg/1.07 × 109 M⊙), corresponding to roughly fifty dark matter
particles at each resolution. Because the Bondi & Hoyle (1944) accretion rate is
proportional to the square of the BH mass, an increase in initial mass can cause
BHs to growmuch earlier. We use a BH seed mass of 105 M⊙ for intermediate and
high resolution, and of 107 M⊙ for low resolution. The seed mass had to be in-
creased for low resolution, since the rapid growth phase of the BHs corresponds
to unresolved galaxy masses (see e.g. Bower et al., 2017; McAlpine et al., 2018).

As we do not properly resolve dynamical friction at our resolution, BHs are
repositioned by hand to the minimum of the gravitational potential following the
method of Bahé et al. (2022)5. For BH mergers we also follow the prescription by
Bahé et al. (2022).

5The exclusion of the BH from the calculation of the gravitational potential used for repositioning
was only done for high and low resolution, as we only became aware of its importance later. This
significantly strengthened the quenching of star formation in galaxies with large stellar masses for
our high resolution simulations.
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Besides merging with other BHs, BHs grow via accretion of gas, which is as-
sumed to occur at a modified Bondi-Hoyle rate,

ṁaccr = α
4πGc2m2

BHρ(
c2s + v2BH

)3/2 , (2.4)

where mBH is the BH mass, cs is the sound speed of the gas, ρ is the gas density, c
is the speed of light and vBH is the velocity of the BH with respect to its environ-
ment. The factor α is a boost factor that is added because we do not resolve the
Bondi radius and because we lack the resolution to model the phase structure of
the ISM. We use the parametrization of Booth & Schaye (2009),

α =max

( nH
nH,∗

)βBH
,1

 , (2.5)

where nH,∗ = 0.1 cm−3, which corresponds to the density threshold for star forma-
tion in the intermediate- and high-resolution simulations (we use the same value
for all resolutions). The logarithmic density slope βBH is a free parameter that
we vary during the calibration. After some experimentation using simulations
where only a single parameter is varied between runs, we settled on priors of
0−0.9, 0.1−0.9 and 0−3 for high , intermediate and low resolution, respectively.

The gas accretion rate is capped at the Eddington (1913) rate. Following Bahé
et al. (2022), the BH is allowed to ‘nibble’ on neighbouring gas particles until the
gas particles only have half of their original mass remaining.

2.2.3 AGN feedback

In all but two of the simulations AGN feedback energy is injected into the
medium surrounding the BH in thermal form using the prescription from Booth
& Schaye (2009). The model used in the remaining simulations is based on jet
feedback and is described in §2.2.3.

While accreting gas, the BH adds a fraction ϵrϵf = 0.015 of the accreted rest
mass energy to an internal feedback energy reservoir, where ϵr = 0.1 is the as-
sumed radiative efficiency and ϵf = 0.15 is the assumed AGN feedback efficiency,
i.e. the fraction of the radiated energy that is coupled to the gas surrounding the
BH. Once enough energy is available to increase the temperature of nheat gas par-
ticles by ∆TAGN, this energy is injected into the neighbouring gas particles. The
energy injected in a single event is proportional to nheat∆TAGN, where ∆TAGN is
the increase in temperature that is applied to nheat neighbours. We find that it
is the product nheat∆TAGN that is most important for regulating how much gas
is expelled from clusters, and that ∆TAGN and nheat are largely degenerate. We
therefore fix nheat to one and use ∆TAGN as a free parameter that is varied in the
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calibration. Following the findings by Chaikin et al. (2022b), we inject the ther-
mal energy into the nearest neighbour of the BH, which gives results that are
nearly indistinguishable from a statistically isotropic approach.

To choose the prior for ∆TAGN we take a similar approach as for the stellar
feedback kick velocity. However, instead of avoiding velocities that are too low
to have an effect, we now have to make sure that feedback raises the temperature
to a value sufficiently high to avoid catastrophic numerical over-cooling. The
sampling issue is also slightly different than for stellar feedback. While stellar
feedback is limited to young stars, BHs can inject energy throughout their lives
and hence the time sampling of these events becomes important. If the time be-
tween AGN feedback events becomes too long, then the BHs will be unable to
self-regulate. If BHs cannot regulate their growth, then this can lead to an unre-
alistic mass distribution of both the BHs and their host galaxies. To summarise,
we have two main considerations:

1. What is the ∆TAGN below which radiative losses are already severe at injec-
tion for the densities at which stars form?

2. What is the ∆TAGN above which the time between AGN events becomes
longer than the BH growth time?

Dalla Vecchia & Schaye (2012) demonstrated that the density above which
thermal feedback becomes ineffective can be predicted based on the ratio of the
radiative cooling time, which depends on the density and temperature, and the
sound crossing time across a resolution element, which depends on the numeri-
cal resolution. According to their equation 18, feedback becomes inefficient for
densities exceeding

nH,tc = 0.25 cm−3
(∆TAGN

107.5 K

)3/2 ( mg

1.09× 109M⊙

)−1/2
. (2.6)

Comparing this to our threshold for star formation (nH = 10−1 cm−3 for interme-
diate/high resolution and 10−3 cm−3 for low resolution), yields minimum values
of log10∆TAGN/K = 6.9, 7.2, and 6.2 for the high, intermediate, and low resolu-
tion, respectively. However, the above equation assumes radiative losses to be
dominated by Bremsstrahlung and Dalla Vecchia & Schaye (2012) showed that it
underestimates the radiative losses for ∆TAGN < 107K. For this reason we do not
consider values below 107K. On the other hand, since we inject the energy at the
end of the time step, the feedback can do work during a single time step even
if the temperature is too low to avoid overcooling, which means that somewhat
lower values than implied by the above equation (but still higher than 107K) may
still be of interest.

If we define ∆mBH to be the gas mass that must be accreted for the BH to have
sufficient energy to heat a single gas particle, then the ratio of the time between



2

2.2. Simulations 55

AGN feedback events and the time of BH growth is given by (Booth & Schaye,
2009),

tAGN

tBH
=
∆mBH/ṁBH

mBH/ṁBH
(2.7)

=
mgkB(1− ϵr)

(γ − 1)µmHϵfϵrc2
nheat∆TAGN

mBH
(2.8)

≈ 0.98
(1− ϵr

0.9

)( mg

1.09× 109M⊙

)( ϵfϵr
0.015

)−1
×

(nheat∆TAGN

108.5 K

)( mBH

107M⊙

)−1
,

(2.9)

where γ = 5/3 is the ratio of specific heats and µ = 0.6 is the mean particle mass
in units of the proton mass mH. Given that we expect to need AGN feedback
to quench star formation in galaxies with stellar mass M∗ ≳ 1011M⊙ and that
in this mass range BHs are observed to have masses MBH ∼ 10−3M∗ (Häring &
Rix, 2004), we need the BHs to become self-regulating whenMBH≪ 108M⊙. The
condition tAGN < tBH then implies that for our nheat = 1 we require ∆TAGN ≲
108.5K for intermediate resolution, and values 8 times higher (lower) for high
(low) resolution.

Based on the above considerations and some small test runs, we adopted the
flat priors log10∆TAGN/K = 7.7 − 8.9, 7.5 − 8.5, and 7.0 − 9.5 for high, intermedi-
ate and low resolution, respectively. For both intermediate and high resolution
the prior ranges are smaller than what is possible based on our considerations.
From our test runs we found that these ranges bracket a sufficiently large range
in the observables we are interested in and the smaller ranges lead to slightly
better sampling of the parameter space around the best-fitting model. For low
resolution the prior extends to (unnecessarily) high values, but we will see that
the best-fitting value is actually similar to those for the other resolutions. We
can afford a larger prior range for the low resolution simulations as we are only
sampling two parameters.

Jet feedback

In addition to the fully thermal AGN feedback scheme described above, we also
calibrate a kinetic AGN feedback variation. The model used for kinetic AGN
feedback is based on the spin-driven jet feedbackmodel described by Huško et al.
(2022), implemented into swift. In this model energy is injected by kicking two
particles on opposite sides of the BH, according to its angular momentum vec-
tor. The angular momentum of the BH is calculated in a subgrid model for an
accretion disc that is based on general relativistic magneto-hydrodynamics sim-
ulations of single BHs in the low accretion regime (< 0.01 Eddington). For more
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details see Huško et al. (2022). The spin from black holes that remains after
mergers is computed according to the description by Rezzolla et al. (2008).

Due to the relatively low resolutions used for FLAMINGO, we make some
simplifications to the complete model. As we intend for the jet model to be max-
imally different from the thermal feedback mode, we do not switch from kinetic
to thermal feedback at high Eddington rates, and instead use the kinetic feed-
back at all accretion rates. Instead of using the efficiencies based on the subgrid
accretion model, we fix the jet efficiency to ϵ = 0.015. This efficiency is equal
to the combined coupling and radiative efficiency, ϵfϵr, for the thermal mode
feedback. This implies that for each unit of mass accreted by the BH, the same
amount of energy becomes available in the jet model as for the fiducial thermal
model. While we do not use a spin-dependent feedback efficiency, we do still use
the subgrid model to track the angular momentum vector of the BH and use it to
select the direction in which gas particles are kicked. The BH accretion model is
identical to that described in §2.2.2, and for calibration of the jet model we vary
the boost factor βBH.

When the BH has accreted enough mass, two neighbouring gas particles are
kicked with a total kinetic energy equal to

Ejet = 2× 1
2
mgv

2
jet, (2.10)

where vjet is the target jet velocity (we use the term target because it is the energy
that is fixed, similarly to the supernova kicks, see §2.2.1), which is a free param-
eter that we calibrate. The jet velocity plays a role similar to ∆TAGN for the case
of thermal feedback. As the energy is injected in kinetic form, the model is less
affected by thermal losses, but picking velocities that are too low will make the
gas unable to escape to large distances (see Huško et al., 2022). For very high val-
ues we again run into sampling issues. Based on these considerations and some
initial tests, we use flat priors over the range of vjet/(km s−1) = 102.7 − 103.5, cor-
responding in energy to ∆TAGN/K ≈ 107.1 − 108.7. We only calibrate this model at
intermediate resolution.
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Figure 2.1: Compilation of observational data used for calibration. On the left we
plot the SMF. On the right we plot the cluster gas fraction versus total mass, both
measured atR500c. Where available we display the 1σ measurement errors, which
do not include intrinsic scatter. The X-ray data are binned from a compilation of
available data, see §2.3.2, except the lowest mass point, which is obtained from a
fit by Lovisari et al. (2015). We show the individual clusters as black dots. Note
that the X-ray data are plotted without any correction for the hydrostatic mass
bias. For this work we use the Driver et al. (2022) data for the SMF, and the X-ray
and Akino et al. (2022) data for the gas fractions.
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Table 2.3: Mass ranges in M⊙ used for each observable when fitting the emulator to data. The values are rounded because the
exact ranges vary with the values of the observational bias factors.

Observable SMF M∗ lower limit SMF M∗ upper limit fgas,500c M500c lower limit fgas,500c M500c upper limit
High-res [m8] 108.67 1011.50 1013.50 1013.73

Intermediate-res [m9] 109.92 1011.50 1013.50 1014.36

Low-res [m10] 1011.17 1011.50 1013.50 1014.53
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2.3 Observational data and biases

Before we can start to calibrate our simulations, we need to have observational
data to compare with our simulations. We calibrate to the galaxy stellar mass
function (SMF) and the gas fractions in groups and clusters (fgas,500c(M500c)).

One of the goals of the FLAMINGO simulations is to predict galaxy clustering
and cross correlations between galaxies and other tracers of the matter distribu-
tion. The SMF allows us to constrain the stellar content of haloes as a function
of their mass. This is not only crucial for the prediction of observations using
galaxies, the stellar mass also directly affects the distribution of dark matter in
haloes, and the orbits of subhaloes. Although matching the SMF does not ensure
that each halo contains the correct stellar mass, it suggests the relation is at least
statistically plausible provided the model assumes the correct cosmology.

Besides galaxy clustering, we also wish to use FLAMINGO to investigate other
cosmological observables tracing the distribution of matter, such as X-ray emis-
sion, the Sunyaev-Zeldovich (SZ) effect and lensing maps. From studies by Sem-
boloni et al. (2013), Van Daalen et al. (2020) and Salcido et al. (2023) we know
that the gas fractions in clusters have a large impact on the matter power spectra
on scales relevant for e.g. cosmic shear. By calibrating to the observed gas frac-
tions, we can also make robust predictions for the distribution of gas expelled
from group/cluster cores.

We calibrate to the same observables as were used for the BAHAMAS simu-
lation (McCarthy et al., 2017, 2018). In this section we will discuss the data that
we considered and the observational biases that we account for.

2.3.1 The galaxy stellar mass function

Constraining the SMF has been the goal of a large number of studies, many of
which are based on the SDSS (Li & White, 2009; D’Souza et al., 2015; Bernardi
et al., 2013, 2017) or the more recent GAMA survey (Baldry et al., 2012; Wright
et al., 2017; Driver et al., 2022). A compilation of these data sets is shown in the
left panel of Fig. 2.1. It is clear that there are substantial systematic differences
between some of the different groups that have tried to measure the SMF, par-
ticularly at the low- and high-mass ends. However, some of the most significant
outliers are older results. While there are still discrepancies at the high-mass end,
the results from the three most recent studies, D’Souza et al. (2015); Bernardi
et al. (2017); Driver et al. (2022), are in reasonable agreement over a large part
of the mass range. Instead of trying to combine different data sets, we limit the
fitted mass range to M∗ < 1011.5M⊙ and we choose to use the most recent GAMA
result from Driver et al. (2022) at z = 0. Not only is this the most recent study,
it also provides a useful prior for possible biasing due to cosmic variance. The
upper mass limit also decreases the possible bias we get due to our choice of sim-
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ulation aperture (see §2.4.2 and Appendix 2.A for more details). We always set a
simulation-resolution dependent lower mass limit on the mass range we use for
fitting. The mass ranges we use can be found in Table 2.3.

Fitting the SMFs from simulations to observations requires special care. There
are some important differences/sources of uncertainty that need to be taken into
account:

1. Observations suffer from random errors in measuring the mass. while sim-
ulations have no mass measurement errors (at least for a fixed definition of
a galaxy, i.e. for a given subhalo finder). Simulations do suffer from ran-
domness errors (see Borrow et al., 2022a), as discussed by these authors,
this issue is negligible for our analysis because we consider large ensembles
of galaxies..

2. Observations possibly suffer from systematic errors, which may originate
from spectral energy distribution fitting, corrections for dust extinction,
surface brightness profile fitting, and/or selection effects.

3. Observations may suffer from cosmic variance.

Before discussing how we take each of these effects into account, we note that the
uncertainty in the stellar IMF is not directly relevant because the observational
analysis and the simulations use the same IMF. The observed SMF also depends
on the assumed cosmology, but this is close enough to the one used in the simu-
lations to have a negligible effect on the comparison.

Random errors on the observed stellar mass

Symmetric observational scatter in the measured stellar mass will cause a sys-
tematic shift in the inferred SMF. Because there are more galaxies in lower mass
bins, it is more likely for galaxies to scatter to a higher mass bin than to a lower
mass bin. This is especially important at the high-mass end, where the SMF is
steep. This effect is known as Eddington (1913) bias. We account for it by adding
scatter to the simulation masses. We adopt the lognormal scatter from Behroozi
et al. (2019), which has a redshift-dependent standard deviation of

σ (log10M∗) = min(0.070+0.071z,0.3) dex, (2.11)

where we sample the lognormal distribution for each galaxy. This then adds an
Eddington-like bias to the simulation results, consistent with observations.

Systematic errors in the observed stellar mass

There are systematic discrepancies between the different observations. The rea-
son for this is mostly found in the stellar population synthesis and dust correction
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models used, as the observed luminosity functions agree better between different
studies than the mass functions. However, at the FLAMINGO resolution, the
stellar masses can be predicted much more accurately than the star formation
histories, current-day star formation rates and dust extinction rates. Therefore,
calibration to the SMF is preferable over a direct comparison with the luminosity
function.

To account for potential systematic shifts in the observed stellar masses, we
include a stellar mass bias parameter

log10(M∗,obs)→ log10(M∗,obs) + log10 b∗, (2.12)

where the bias b∗ is assumed to be independent of mass. Note that the sign is
defined such that a positive stellar mass bias implies the observations underesti-
mate the true stellar mass. We use a lognormal prior to constrain the bias param-
eter. The prior is taken from Behroozi et al. (2019) (their eq. 25) and is based on
the existing tensions between observed time-integrated star formation rates and
observed SMFs,

log10 b∗ =N (0,0.14), (2.13)

whereN (µ,σ ) is a normal distribution with mean µ and standard deviation σ .
We adopt a mass-independent bias. While a mass-dependent bias might have

improved the agreement between the data and the simulations, the mass depen-
dence is unknown and therefore there is no obvious parametrization of the mass
dependence. This implies the new free parameters would have no clear priors.
Additionally, we note that our decision not to fit above a stellar mass of 1011.5 M⊙
has a similar effect as switching to a much higher stellar mass bias above this
mass.

Cosmic variance

Driver & Robotham (2010) showed that the error on the SMF due to cosmic vari-
ance can be 5−10 per cent for surveys like GAMA and the SDSS, depending on the
volume considered. Cosmic variance can bias the number density measurements,
because the survey may consist of slightly over- or under-dense regions. For our
mass range we assume that this effect is independent of mass (S. P. Driver, pri-
vate communication). To account for cosmic variance, we allow the observed
number densities to shift up and down slightly,

fobs→ fobs + log10(bcv). (2.14)

Note that the sign is defined such that a positive cosmic variance bias implies
the observations underestimate the number density of galaxies. We constrain
this bias parameter with a Gaussian prior taken from Driver et al. (2022). They
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estimate the error due to cosmic variance to be about 6 per cent, so our prior is
given by

bcv =N (1,0.06). (2.15)
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Table 2.4: Overview of the cluster gas mass fraction data used for this work. The first column lists the reference from which
the data were obtained, the second column lists the number of objects, where ’fit’ indicates that the main result is a fitted
relation between M500c and fgas,500c, the third column shows how the total mass was measured (HSE: X-ray data assuming
hydrostatic equilibrium; WL: weak gravitational lensing), and the final column contains comments on the selection method.

Reference N Type Selection
Vikhlinin et al. (2006) 10 HSE Nearby, relaxed, ambiguous X-ray limit
Maughan et al. (2008) 114 HSE NED Cross-match, z > 0.1
Rasmussen & Ponman (2009) 15 HSE Bright groups
Sun et al. (2009) 23 HSE 0.015 < z < 0.13, resolved temperature profiles
Pratt et al. (2010) 31 HSE X-ray flux limited, z < 0.2
Lin et al. (2012) 94 HSE Infrared magnitude limited
Laganá et al. (2013) 126 HSE Crossmatch between Maughan et al. (2008) and SDSS; X-ray flux limit
Sanderson et al. (2013) 5 HSE Optical magnitude limit, σ ≤ 500c km s−1

Gonzalez et al. (2013) 15 HSE Optical magnitude limit, 0.03 < z < 0.13
Lovisari et al. (2015) 20 HSE X-ray flux limited
Hoekstra et al. (2015) 50 WL X-ray flux limited
Pearson et al. (2017) 8 HSE GAMA r-band selection, N > 12, z < 0.12
Mulroy et al. (2019) fit WL X-ray luminosity limit
Lovisari et al. (2020) 120 HSE tSZ-selected from Planck data.
Akino et al. (2022) fit WL C1 - X-ray selected, C2 no clear selection.



2

64 Chapter 2. Calibration using emulators

2.3.2 The cluster gas mass fractions

Data for the cluster gas mass fractions, fgas,500c, come in two varieties. They are
either obtained purely from X-ray observations, or from a combination of X-ray
and weak gravitational lensing observations where the latter are used to measure
the total cluster mass. For the X-ray only data, the density and temperature pro-
files fitted to the observations are used to measure the total mass assuming the
gas is in hydrostatic equilibrium (HSE). In both cases the gas mass is obtained
by integrating the density profile measured from X-ray observations out to the
measured value of R500c. Table 2.4 summarises all the different sets of data that
we use.

As was the case for the SMF, there are biases that we need to account for when
we compare observations with simulations. There are four distinct issues that we
take into account:

1. At the low-mass end selection effects become important, because at fixed
halo mass objects with a higher gas content will tend to emit more X-ray
radiation. Any X-ray selected sample may therefore have gas fractions that
are biased high, particularly at low masses.

2. The measurement of total mass from X-ray data under the assumption of
HSE is well documented to be biased low (e.g. Hoekstra et al., 2015; Eckert
et al., 2016; Smith et al., 2016).

3. For the weak lensing data, we make use of the fits of the relation between
gas fraction and mass provided by the authors. The fits are preferred to in-
dividual measurements as the fits account for the selection function of the
sample. However, for our purposes the fits need to be sampled at particular
masses. This needs to be done in a way that limits the covariance between
the samples and that is representative of the data used (i.e. no extrapola-
tion).

4. As clusters are rare objects they are usually observed over a large redshift
range. Furthermore, because weak lensing is most efficient when the lens is
halfway between the observer and the background galaxies, weak lensing
observations tend to probe higher redshifts than X-ray data. Clusters evolve
over time, so we need to make sure the simulation samples are representa-
tive for the observational samples we compare them with.

For the cluster gas fractions the largest mass we can fit for is limited by the box
size of each simulation. The upper mass limit used for fitting therefore changes
with resolution (as we use a different box size for each resolution). The upper
limits can be found in Table 2.3.
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Table 2.5: Compilation of cluster X-ray gas fraction data used for calibration.
These values are for the DESYR3 cosmology (h = 0.681, Ωm = 0.298). The val-
ues are obtained by taking the median of the X-ray data described in Table 2.4
in eight logarithmically spaced bins between 1013.8 and 1015.0 M⊙. The errors
are the absolute difference between the 16th or 84th percentile and the median
(whichever is largest), obtained by bootstrap resampling the median.

M500c fgas,500c
(log10M⊙)
13.89 0.083± 0.002
14.06 0.094± 0.003
14.23 0.105± 0.005
14.40 0.115± 0.008
14.57 0.130± 0.002
14.74 0.130± 0.002
14.91 0.139± 0.003

X-ray data

The first set of gas fraction data we describe is the X-ray (or HSE) data. For each
data set we store M500c and fgas,500c, with asymmetric errors where available,
and correct the data to the FLAMINGO cosmology (M500c ∝ h−1, fgas,500c ∝ h−1.5).
The combined data set has 581 objects but contains duplicates. For each object
that appears more than once we calculate a new data point by taking an un-
weighted mean of the different measurements. The mean is taken in both M500c
and fgas,500c. Because the duplicates are often based on (in part) the same data,
the errors will not be independent and we combine them via

σ2 =
1
N

N∑
i

σ2
i , (2.16)

where N is the number of times a single object appears in the set. This leaves
us with 533 objects. Note that we do not use the errors for the re-binning, as we
make use of bootstrap re-sampling to compute the errors.

We need to consider redshift evolution. The emulators will be trained on
simulation snapshots corresponding to a single redshift. Imposing a redshift cut
of z < 0.25 causes the median redshift of the X-ray sample to become 0.1, thus
allowing us to compare with simulation snapshots at z = 0.1. The redshift cut
reduces the sample to 310 objects. The individual masses and gas fractions are
shown as black dots in Fig. 2.1.

We combine the X-raymeasurements by computing themedian gas fraction in
eight logarithmically spaced hydrostatic mass bins between 1013.8 and 1015.0 M⊙.
For each bin, the error on themedian is obtained by taking the difference between
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the median and the 16th−84th percentiles obtained from bootstrap resampling
the objects. This gives us asymmetric errors around the median. As our likeli-
hood uses symmetric errors, we use only the greater of the positive and negative
errors. The tabulated data points can be found in Table 2.5.

Furthermore, selection effects are expected to be most prevalent at lower halo
masses. The median observed gas fraction as a function of mass shows a clear
trend-break atM500c,HSE ≈ 1013.8 M⊙. Below this mass the gas fractions no longer
decrease, but instead plateau, a behaviour that deviates from what is expected
for an unbiased sample (e.g. McCarthy et al., 2017). To deal with this we impose
a mass cut at a hydrostatic mass of M500c,HSE > 1013.8 M⊙, but add the fit from
Lovisari et al. (2015) at their median mass (4× 1013M⊙) as a separate data point.

We account for hydrostatic mass bias by adding a constant bias term to the
HSE masses,

log10M500c = log10M500c,HSE − log10(bHSE). (2.17)

Note that values bHSE < 1 imply that the hydrostatic mass estimate underesti-
mates the true mass. We neglect the effect of hydrostatic bias on the gas fraction
because it is comparatively small (McCarthy et al., 2017). This is because both
the total and gas mass increase with increasing R500c. The measured gas fraction
will differ only at the level of the change in cumulative gas fraction between the
true and biased R500c. This is expected to cause only mild changes in the gas frac-
tion (see e.g. fig. 6 of Velliscig et al., 2014). Before calculating the median that
we compare with the simulation we thus adjust all the observed HSE masses. By
combining both X-ray and weak lensing observations, we can constrain the hy-
drostatic bias. However, we found that our compilation of data on its own is not
constraining enough without the use of a prior. To define our prior, we take the
values 0.72 ± 0.08 from Eckert et al. (2016) and 0.76 ± 0.06 from Hoekstra et al.
(2015) and combine the two to obtain the Gaussian prior

bHSE =N (0.74,0.10). (2.18)

Eckert et al. (2016) and Hoekstra et al. (2015) estimate the hydrostatic mass bias
by directly comparing the masses they obtain fromweak lensing and from X-rays.

Weak lensing data

We complement the X-ray data with the latest HSC-XXL weak gravitational lens-
ing data fromAkino et al. (2022). Higher-mass data fromMulroy et al. (2019) and
Hoekstra et al. (2015) are available and plotted in Fig. 2.1, but the box size used
for our calibration runs is too small to make use of them. To compare with the
weak lensing data, we make use of the power-law fits to the relation between the
gas fraction and mass given by the authors. These fits take selection effects into
account. Because the power-law fits have two free parameters, sampling them
at more than two masses would result in strong covariance between the sampled
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points. We therefore use the fit to create two data points that are spaced equally
far from the pivot used by the authors. This gives us fgas,500c(M500c = 1013.5 M⊙) =
0.054± 0.010 and fgas,500c(M500c = 1014.5 M⊙) = 0.106± 0.023. Due to the limited
box size, we use only the lower, M500c = 1013.5 M⊙, point for fitting high- and
intermediate-resolution simulations. For low resolution we are able to include
the second M500c = 1014.5M⊙ point.

Themedian redshift of the HSC-XXL sample is z = 0.3. We therefore construct
a separate emulator for fgas,500c at z = 0.3, which we use to fit the weak lensing
data. The fits make use of self-similar scaling to move the different clusters to
the same redshift, so we could have corrected them to the redshift z = 0.1 used
for the X-ray data. However, we prefer to use a redshift close to that of the actual
sample, to minimize the size of the correction. Akino et al. (2022) give both the
weak lensing inferred and the true M500c, as they correct for the expected bias
on the weak lensing inferred M500c. We make use of their calibrated true M500c
masses.

2.4 Emulator construction

Cosmological hydrodynamical simulations are too expensive to be run for each
step in an MCMC chain used to evaluate likelihoods. In order to use simulation
outputs in MCMC methods, we therefore make use of emulators trained on a
set of simulations. Emulators are used to interpolate results in the parameter
space between training simulations. They are able to predict the output of the
simulations as a continuous function of the input parameters, in a fraction of
the original computation time. This method has previously been applied to the
matter power spectrum (e.g. Heitmann et al., 2009, 2016b; Euclid Collaboration
et al., 2019; Angulo et al., 2021) and to baryonic observables (e.g. Oh et al., 2022;
Jo et al., 2023). By using emulators, we can interpolate between the results of a
set of training simulations and obtain a fully continuous prediction of how the
simulation responds to changes in subgrid parameters.

2.4.1 Training sets

The first step in setting up the emulator is to create a training set. In our train-
ing set we want to vary those subgrid parameters that we know are important
for the calibration. As discussed in Section 2.2, for the intermediate- and high-
resolution simulations we vary the following four parameters: the stellar feed-
back efficiency, fSN, the target kick velocity for stellar feedback, ∆vSN, the power-
law slope of the density dependence of the black hole accretion boost factor, βBH,
and the AGN heating temperature, ∆TAGN (vjet, the target kick velocity for AGN
feedback in the jet model). For the low-resolution simulations we do not require
stellar feedback and therefore vary only the last two parameters. The ranges over
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which the parameters are varied are motivated in Section 2.2 and listed in Ta-
ble 2.2 (Table 2.9 for the jet model).

To optimise the parameter space, we make use of a Latin hypercube, first pro-
posed by McKay et al. (1979). To set up a Latin hypercube with Nsims nodes, we
start with an ordered list of Nsims independent samples along every dimension
of the hypercube, where the number of dimensions equals the number of sub-
grid parameters that are varied. These samples are then combined and shuffled
to create a set of Nsims points θ that are distributed uniformly within the hyper-
cube, where in our case θ = (fSN, log10∆vSN,βBH, log10∆TAGN) for intermediate
and high resolution, and θ = (βBH, log10∆TAGN) for low resolution. Our crite-
rion for optimising the sampling is the ’maximin’ approach, which maximises the
minimum distance that sampled points are away from each other. An in depth
explanation of how the method works is provided by Heitmann et al. (2009). We
apply to each sample a random shift of at most half the average spacing between
samples. We then run the Nsims simulations corresponding to the nodes of the
Latin hypercube.

We use the public package swiftemulator
6 (Kugel & Borrow, 2022), built on

the package george (Ambikasaran et al., 2015a), to set up the Latin hypercube as
well as to train and test the emulators. swiftemulator streamlines the emulation
process for results obtained from Swift runs. Within swiftemulator we use the
Latin hypercube generator from pyDOE (Baudin et al., 2012).

We use Nsims = 32. The sampling of parameter space provided by the Latin
hypercube used for intermediate resolution is shown in Fig. 2.2. The box sizes
used for the training are (100 Mpc)3, (200 Mpc)3 and (400 Mpc)3 for high, in-
termediate, and low resolution, respectively. The volume is a compromise be-
tween computational cost and the maximum mass for which we train the emu-
lator. Each run cost ∼ 800, ∼ 1300 and ∼ 1600 cpu hours for low, intermediate
and high resolution respectively. Using single simulations with an eight times
larger volume at each resolution and with the results of Schaye et al. (2023), we
have verified that these box sizes are sufficiently large for box size effects to be
negligible with respect to the production runs.

2.4.2 Obtaining the required simulation output

From our simulation we take three snapshots at z = 0, 0.1 and 0.3. For each
snapshot we find haloes and subhaloes using VELOCIraptor (Elahi et al., 2019b;
Cañas et al., 2019). After an initial friends of friends group search it uses the full
6-D phase space information to disentangle the central and satellite subhaloes.

One of the difficulties of comparing with data, is that we have to choose
how to define the edge of simulated galaxies. Observed cluster gas mass frac-
tions are measured within R500c. For the stellar masses needed to compute the

6https://swiftemulator.readthedocs.io/en/latest/

https://swiftemulator.readthedocs.io/en/latest/
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SMF, the situation is less clear. Ideally, we would create mock observations, fit
them with Sérsic profiles and integrate these to obtain stellar masses, which is
the procedure adopted by observational studies. This was recently done for the
EAGLE simulation by De Graaff et al. (2022). However, the resolution of the
FLAMINGO simulations is too limited to mimic the observational strategy. As
shown by Schaye et al. (2023), FLAMINGO significantly overestimates the sizes
of low-intermediate mass galaxies, which means we cannot create realistic vir-
tual galaxy observations. Based on the findings of De Graaff et al. (2022), we
choose to calibrate the SMF using a 3D aperture with a radius of 50 kpc for the
simulations. A comparison between different choices of aperture can be found in
Appendix 2.A, where we show that the aperture becomes only important above a
stellar mass of ≈ 1011M⊙.

Before computing the galaxy SMF, we first add random errors to the simula-
tion stellar masses as described in §2.3.1. The SMF is then sampled in 25 loga-
rithmically spaced mass bins between 109M⊙ and 2 × 1012M⊙ for intermediate-
and low-resolution simulations, and 40 bins between 108M⊙ and 2× 1013M⊙ for
high-resolution simulations. We choose to use a finer binning than is available for
the observational data to allow the emulator to capture the finer features of the
predicted SMF. Tests with different binning strategies show this had no effect on
the results. We have enough galaxies across the fitted mass range for the Poisson
errors to still be very small even with finer binning. The uncertainty we provide
to the emulator is the Poisson error for each bin.

For the gas fraction we instead opt for an adaptive binning strategy. While
the simulation volumes used for the calibration are large enough to constrain the
SMF over the adopted mass range, at the high cluster mass end, we always run
out of clusters before we run out of data to compare with. For all resolutions
we use 20 bins between M500c of 1013 and 1015M⊙ although we never manage to
make use of this entire range. As the higher mass bins start to run out of objects,
we allow the highest mass bin to stretch to include a sufficient number of objects.
We require each bin to contain at least ten objects. We also limit the stretching
of the bin to half the original bin width. The uncertainties we provide to the
emulator are based on the 16th−84th percentiles. As the emulator only takes
symmetrical errors, we take mean of the absolute difference between the median
and 16th percentile and the difference between the median and 84th percentile.
For both the SMF and the cluster gas fraction we discard any empty bins.

2.4.3 Training using Gaussian processes

After measuring the SMF and cluster gas fraction for each node of the hypercube,
we can train an emulator for each observable. Because each individual node of the
Latin hypercube requires a cosmological hydro simulation, we are operating in a
regime where we have a limited number of samples. We also know a priori that
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the observables we want to emulate (i.e., the galaxy number density and group
and cluster gas fractions) vary smoothly with mass and with the values of the
subgrid parameters. Both these properties are in the regime in which Gaussian
processes give excellent predictive power with respect to the input data (see e.g.
Rasmussen et al., 2004; Rasmussen & Williams, 2006).

We set up a different Gaussian process for each relation we emulate. We com-
bine the mass (either stellar orM500c) and subgrid parameters into a single input
data vector x = (log10M,θ), from which the emulator then predicts the depen-
dent quantity, which is either the number density of galaxies, f (M∗), or the gas
fraction, fgas,500c. Each emulator thus has N +1 parameters, where N is the num-
ber of subgrid parameters that are varied. In order to limit the dynamic range, we
transformed many of the inputs to log-space. This includes the masses (aperture
stellar mass or M500c), the values of the SMF and the two subgrid parameters
that are sampled in log-space (∆vSN and ∆TAGN). This is an important step as
it greatly increases the smoothness of the emulated relations, making it much
easier for the emulator to give accurate predictions. As the input relations are
smooth over the range we are interested in, we do not require any other transfor-
mations of the input. We feed the data directly into the Gaussian process. We use
a squared exponential kernel

k(x,x′) = exp
(
− (x − x

′)TΘ−1(x − x′)
2

)
, (2.19)

where Θ represents a diagonal matrix containing the hyperparameters that set
the scale for each input parameter, and x and x′ are two positions in parameter
space. The hyperparameters are optimised based on maximising the marginal
likelihood (see Rasmussen & Williams, 2006). As we train a separate Gaussian
process for each relation, we also have a separate set of hyperparameters for each
relation. We have verified the posteriors of the hyperparameters to ensure that
the values we use are well converged.

2.4.4 Error estimation

It is important to verify that the emulator is able to give accurate results before
we use it to find best-fitting subgrid and bias parameters. Moreover, we need
to quantify the accuracy of the emulator because we will account for emulation
errors when fitting to data. The best way to measure the uncertainty in the emu-
lator predictions is to perform test simulations that span the emulated parameter
space. However, this implies that we would need to run many additional simula-
tions. To save time, we choose instead to measure the uncertainty by making use
of k-fold cross-validation, which we will refer to as cross-checks.

We createNsims new data sets, whereNsims is the number of nodes in our Latin
hypercube (32 in our case). For each of these data sets we take out one simulation
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and retrain the emulator on the reduced set of Nsims − 1 samples. We then test
how accurately the emulator is able to predict the simulation that was left out.
We do this by taking the ratio between the result from the run that was left out,
and the prediction of the emulator for the parameter values of the left-out run.
This gives us a value for each mass bin in the training data. We combine the ratios
for all mass bins and Nsims emulators into a single list and compute the standard
deviation, σcrosscheck. The error on the emulator prediction, σemu, is then given by

σemu = |σcrosscheckf (M, `)| , (2.20)

where f (M, `) is the value predicted by the emulator for massM and at parameter
values `. The result of the cross checks for the Latin hypercube of intermediate-
resolution simulations can be seen in Fig. 2.3. It is important to note that cross
checks are a conservative method to estimate the uncertainty. The input for
cross-checks is uniformly sampled, implying that a significant fraction of the test
points is located near the boundaries of the parameter space, where a Gaussian
process is naturally less accurate.
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Table 2.6: Accuracy of the emulators, σcrosscheck, for the three different simula-
tion resolutions and the jet model AGN variation, in percentages. The values are
obtained by taking the standard deviation of the ratio between the result from
the simulation omitted from the Latin hypercube and the prediction from the
emulator trained on all but that simulation.

Calibration target High Intermediate Low Jet
log10 SMF 2.7 2.2 1.5 1.9
fgas,z=0.1 8.9 7.5 4.8 7.1
fgas,z=0.3 7.9 6.7 4.2 6.1

From Fig. 2.3 it is clear that our emulators do not suffer from significant sys-
tematic errors for our three calibration targets, the z = 0 SMF, z = 0.1 X-ray cluster
gas fractions, and z = 0.3 weak lensing cluster gas fractions. There are no signif-
icant trends with mass, and the medians ratio is centered close to one, which
corresponds to an error of zero.

It is clear that the emulator for the SMF is more accurate than the emulators
for the gas fractions. This is a reflection of the way we constrain the input simu-
lations. In the case of the SMF, the errors on the input are Poisson errors, which
are quite small for our simulation volumes in the mass range we are interested
in. The fgas errors are based on the 16th−84th percentiles of the simulated gas
fractions in each mass bin, which can be larger than the 5 per cent accuracy that
the emulator attains.

The emulator accuracy for all resolutions can be found in Table 2.6. The emu-
lators become more accurate going to lower resolution. There are several possible
reasons for this trend. First, we used larger box sizes for the lower-resolution sim-
ulations, so the uncertainty intrinsic to the simulation is smaller at fixed mass.
Second, we used a slightly larger parameter range for high resolution than for
intermediate resolution, while for low resolution we only used two parameters,
greatly reducing the sampled space.

The obtained accuracy is sufficient, as it is higher than the observational scat-
ter/uncertainty. Any deviations between the model and the data at the level of
the emulator error would still be consistent with the observational constraints,
especially as we allow for observational biases in our analysis.

2.5 Using the emulator for parameter estimation

To use the emulator as the model that we compare with observational data, we
need a way to optimise the subgrid parameters θ (see Section 2.2) and, optionally,
the observational bias factors log10 b∗, bCV, and bHSE (see Section 2.3).

For parameter optimisation we use the Markov chain Monte Carlo (MCMC)
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package emcee (Foreman-Mackey et al., 2013). We use the ensemble sampler,
which we give our posterior likelihood. For every fit we have done using MCMC,
we have varied the number of walkers and steps to ensure the resulting values
are converged. We discard the first 500 steps of each chain to avoid systematic
errors due to the burn-in phase.

To evaluate the goodness of fit of an emulator prediction to the observations,
we first define the log likelihood for a single observed mass bin. For the SMF this
is given by

lnPSMF(M∗,obs,bcv,b∗,θ) ≡

−
[
fobs(M∗,obs) + log10 bCV − femu(b∗M∗,obs,θ)

]2
σ2
obs(M∗,obs) + σ2

emu(b∗M∗,obs,θ)
, (2.21)

Here f (M∗) is the SMF,

f (M∗) ≡ log10

(
dn

dlog10(M∗)

)
, (2.22)

the subscripts indicate whether the quantity is observed (’obs’) or emulated
(’emu’), θ is a vector containing the values of the varied subgrid parameters,
and σ is the error on f . For σemu this refers to the error on the emulator from
cross-checks, equation 2.20. The expression also accounts for observational bias
factors due to cosmic variance, bCV, and the conversion of direct observables into
stellar mass, b∗, that were discussed in §2.3.1. For cluster gas fractions measured
from X-ray observations the log likelihood is defined as

lnPgas(M500c,obs,bHSE,θ) ≡

−

[
fgas,500c,obs(M500c,obs)− fgas,500c,emu(b

−1
HSEM500c,obs,θ)

]2
σ2
obs(M500c,obs) + σ2

emu(b−1HSEM500c,obs,θ)
, (2.23)

where bHSE is an observational bias factor due to the assumption of hydrostatic
equilibrium that was discussed in §2.3.2. For gas fractions measured from weak
lensing plus X-ray observations the log likelihood definition is identical except
that we assume the masses are unbiased, implying bHSE = 1 (see e.g. Becker &
Kravtsov, 2011; Bahé et al., 2012). Note that for the likelihood of both the SMF
and the cluster gas fraction we include a variance term to account for the error
on the emulator prediction. This is added to avoid situations where we over-fit
with respect to the uncertainty from the emulator alone.

The likelihood for the observational data is a combination of the likelihoods
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of the individual mass bins of the three data sets

lnPlikelihood(bcv,b∗,bHSE,θ) =

1
NSMF

NSMF∑
i

lnPSMF(M∗,obs,i ,bcv,b∗,θ)+

1
2

 1
NHSE

NHSE∑
j

lnPgas,X-ray(M500c,obs,j ,bHSE,θ)+

1
NWL

NWL∑
k

lnPgas,WL(M500c,obs,k ,θ)

 , (2.24)

where NSMF, NHSE and NWL are the number of (re-binned) observational data
points (i.e. mass bins) for the SMF, the X-ray cluster gas fraction and the weak
lensing cluster gas fraction, respectively. The values of N depend on the fitted
mass ranges (Table 2.3) and vary with resolution. We normalise each likelihood
by the number of data points to ensure each separate likelihood is not directly
dependent on the number of bins used. Furthermore, we average the likelihoods
from the two types of cluster gas fraction data to ensure that the cluster gas frac-
tion and SMF data carry equal weight. In an unweighted fit, the SMF would drive
the results, because it is much better constrained. As the baryon fractions are the
main driver of the baryonic suppression of the matter power spectrum (see e.g.
Van Daalen et al., 2011, 2020; Debackere et al., 2020; Schneider et al., 2020; Sal-
cido et al., 2023), we choose to give the gas fractions equal weight in our analysis.

We then combine the different likelihoods into a single posterior,

logPposterior = logPlikelihood + logPprior, (2.25)

where the total prior is

logPprior =logPbias(b∗) + logPbias(bcv) + logPbias(bHSE)

+ logPsubgrid(θ), (2.26)

Pbias are our priors for the observational bias factors, and Psubgrid is our combined
prior for the subgrid parameters in θ that we wish to calibrate. For the subgrid
parameters, we use flat priors that do not extend beyond the ranges used for the
Latin hypercube (see Table 2.2) in order to avoid extrapolations. The priors on
the bias factors were discussed in Section 2.3.

We also calculate the reduced χ2 for some of our models. We define the re-



2

2.6. Results 77

duced χ2 as

χ2
ν =

NSMF∑
i

logPSMF(M∗,obs,i ,bcv,b∗,θ) +

NHSE∑
j

logPgas,X-ray(M500c,obs,j ,bHSE,θ)+

NWL∑
k

logPgas,WL(M500c,obs,k ,θ)

 /(NSMF +NHSE +NWL −Nθ), (2.27)

where Nθ is the number of sub-grid and bias parameters used for the fit.

2.6 Results

In this section we will describe the main results from our calibration approach.
We use the emulators to perform parameter sweeps in §2.6.1, then we discuss
the fitting results, first at intermediate resolution in §2.6.2 and then at the other
resolutions in §2.6.3, and finally we discuss how we use the emulator to set up
two AGN feedback variations in §2.6.4.

2.6.1 Parameter sweeps

Emulators can be used to investigate the effect of individual parameters via pa-
rameter sweeps, where the emulator predicts the effect of varying a single pa-
rameter over the range used for the Latin hypercube, while keeping all other
parameters fixed to their best-fitting values. Parameter sweeps can give valuable
insight into the importance of particular physical processes and prevent calibra-
tion through emulation from becoming a black box. The result of the subgrid
parameter sweeps for our intermediate resolution runs are shown in Fig. 2.4.
Looking at the response of the calibration targets, it is clear that the different
parameters have distinct effects, indicating that the fits will not have any strong
degeneracies between the varied subgrid parameters.

Increasing the slope of the black hole accretion rate boost factor suppresses
the high-mass end of the SMF, but has almost no effect on the low-mass end
and the cluster gas fractions. Increasing the AGN temperature jump leads to a
mild reduction of the high-mass SMF, but a strong decrease of the cluster gas
fractions. The effects of increasing the stellar feedback energy and kick velocity
are more similar. In both cases the stellar masses are decreased, leading to a
mass-dependent stretching of the SMF towards lower masses. Depending on the
galaxy mass, the SMF can either increase or decrease, though the effect is small
for the high-mass end. Cluster gas fractions decrease when either of the stellar
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Figure 2.4: Subgrid parameter sweeps using the emulator trained on our 32-
node Latin hypercube of (200 Mpc)3 intermediate-resolution simulations. The
parameter sweeps are centred on the best-fitting parameters (see §2.6.2). The left
and right columns show the galaxy stellar mass function and cluster gas fractions,
respectively. In each row a single subgrid parameter is varied across the allowed
range. From top to bottomwe vary the slope of the black hole accretion rate boost
factor slope, the AGN heating temperature, the stellar feedback energy, and the
stellar feedback kick velocity. The grey regions indicate the mass ranges that are
excluded for fitting (see also Table 2.3). Parameter sweeps help gain insight into
how changes in subgrid model parameters map onto observables.
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Table 2.7: Results from the fitting for the observational bias factors. The second
column shows the median and 16th and 84th percentiles, the third column lists
the maximum likelihood value which we denote as the best-fitting.

Bias Median+CL best-fitting

Stellar mass log10 b∗ 0.06+0.11−0.11 0.026

Cosmic variance bCV 0.98+0.06−0.06 0.995

Hydrostatic equilibrium bHSE 0.74+0.09−0.09 0.743

feedback parameters increases, presumably because the stronger stellar feedback
suppresses black hole growth and hence AGN feedback (Bower et al., 2017).

2.6.2 The best-fitting intermediate-resolution model

The best-fitting (i.e. maximum likelihood) values of the subgrid and observa-
tional bias parameters can be found in Tables 2.2 and 2.7, respectively. These
tables also list the medians and 16−84 per cent confidence levels of the posterior
distributions.

The posteriors for the subgrid and bias parameters resulting from fitting
the emulator predictions for intermediate-resolution simulations to the data are
shown in Fig. 2.5. The first thing to note is that the maximum likelihood model
(solid, red circle) lies comfortably within the 68 per cent confidence intervals
(inner contour) for each parameter and that it does not lie close to an edge of the
parameter space. The chosen parameter ranges, i.e. the imposed priors, are thus
sufficiently large for the models to bracket the target data and they do not drive
the results.

It is also clear that there are no strong degeneracies between any of the sub-
grid parameters or between any of the bias parameters. The absence of strongly
degenerate subgrid parameters is partially by construction, because we chose to
fix some of the parameters that would otherwise have caused the results to be-
come degenerate (e.g. nheat and ∆TAGN, see §2.2.3). There is, however, significant
degeneracy between the slope of the density dependence of the black hole ac-
cretion boost factor (βBH) and the stellar mass bias (b∗). These two parameters
are anti-correlated. Increasing the bias shifts the observed SMF towards higher
masses, which means the black hole boost factor needs to decrease to allow more
stars to form in high-mass galaxies, whose growth is controlled by AGN feedback.

The best-fitting values for the galaxy mass and cosmic variance biases are
log10 b∗ = 0.026 and bCV = 0.995, respectively. The fitted hydrostatic bias, bHSE =
0.743, enables the model cluster gas fractions to agree simultaneously with the
Akino et al. (2022) weak lensing data and the compilation of X-ray data. For all
the bias values we find posteriors that are in agreement with the priors, so we
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Figure 2.5: The posterior distributions of the model parameters resulting
from fitting the emulator to the observed SMF and cluster gas fractions for
intermediate-resolution simulations. The parameters shown are the stellar feed-
back energy, fSN, the stellar feedback kick velocity, ∆vSN, the AGN feedback tem-
perature jump, ∆TAGN, the logarithmic slope of the density dependence of the
black hole accretion rate boost factor, βBH, the stellar mass bias, bM∗ , the hy-
drostatic mass bias, bHSE, and the cosmic variance bias, bCV. The four subgrid
parameters are described in Section 2.2 and the three observational bias factors
are discussed in Section 2.3. The black contours show the 68 and 95 per cent
confidence levels. The panels along the diagonal show the one dimensional prob-
ability density for each parameter. In these plots the three vertical lines indicate
the 16th, 50th and 84th percentiles. The solid, red circles indicate the maximum
likelihood values, which were used for the fiducial model. Each panel is centered
on the centers of the priors given in Table 2.2. The posteriors show that we can
find a single solution that fits the simulations to the observational data.
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conclude that our fitting does not put any significant additional constraints on
the bias parameters.

The best-fitting emulator predictions for intermediate resolution are com-
pared with the data in the middle row of Fig. 2.6, which also shows the result
of a (200 Mpc)3 simulation run with the best-fitting subgrid parameter values
(i.e. our fiducial model). The left and right panels show the SMF and cluster gas
fractions, respectively. The gas fractions are shown for both the redshift of the
X-ray data, z = 0.1 (light blue line and dark blue data points), and the redshift of
the weak lensing data, z = 0.3 (purple line and dark purple data points). Grey re-
gions and dotted line styles indicate mass ranges that were excluded from the fit.
The ranges can be found in Table 2.3. Note that the fitted bias factors have been
used to shift the data. We obtain good agreement with the fitted observations
with a reduced χ2

ν = 1.23 for the combined fit to the SMF and the cluster gas frac-
tions. The good agreement between the blue and the red lines demonstrates that
the emulator was able to predict accurately what the fiducial simulation would
look like in the fitted mass range.

Remarkably, the simulations fit the SMF down to galaxy masses correspond-
ing to slightly fewer than ten stellar particles. Comparing the predicted gas frac-
tions at z = 0.1 and 0.3, we see there is very little evolution. The model overshoots
the gas fractions for cluster masses between M500c ≈ 1013.8M⊙ and ≈ 1014.5M⊙,
by about 1σ . We emphasize, however, that our observational error bars are about
a factor of five smaller than the observed object-to-object scatter. Unfortunately,
a box size of (200 Mpc)3 (or even (400 Mpc)3) is not large enough to constrain
the gas fractions in haloes with M500c ≥ 1015M⊙. Performing the same analysis
in a larger volume would potentially allow the emulator to train up to the range
where the M500c-fgas relation starts to flatten.

2.6.3 The best-fitting subgrid high- and low-resolution models

Although we use the simulation-based emulator to fit for the observational bi-
ases, the biases refer to observational effects and should thus be the same for all
models. We therefore do not vary them between the different simulation resolu-
tions. We use the intermediate-resolution simulations to fit the biases, because
their resolution and box size enable us to fit a substantial mass range for both
the SMF and the cluster gas fractions (see Fig. 2.6). For the other resolutions
we keep the observational biases fixed to the values listed in Table 2.7. In this
way we ensure that a direct comparison can be made between the three different
resolutions7.

7The Driver et al. (2022) data points at M*,obs ≤ 1010 M⊙ were updated after we had already fin-
ished the (2.8 Gpc)3 intermediate-resolution FLAMINGO simulation. To be able to use the updated
data for the calibration of the high-resolution simulations, which resolve the SMF down to masses for
which the data were updated, we re-fit the observational biases at intermediate resolution while keep-



2

82 Chapter 2. Calibration using emulators

Fixing the observational biases to the values found for intermediate resolution
leaves only four parameters to fit for high resolution. For low resolution we only
have two parameters to vary because we turn off stellar feedback as these sim-
ulations do not resolve the masses below which stellar feedback dominates (see
§2.2.1). The best-fitting parameter values for each resolution can be found in Ta-
ble 2.2. Corner plots of the posterior distributions for the subgrid parameters are
shown in Appendix 2.B. A comparison of the best-fitting emulator prediction, the
data and runs using the predicted best-fitting subgrid parameter values is shown
in the top and bottom rows of Fig. 2.6 for (100 Mpc)3 high- and (400 Mpc)3 low-
resolution volumes respectively.

At high resolution there is again excellent agreement between the emulator
prediction and the observed data, with reduced χ2

ν = 1.15. The high-resolution
simulation resolves the largest range of stellar mass in the SMF, from ≈ 108.6M⊙
to ≈ 1011.5M⊙. There is a dip around a mass of 1010.2 M⊙ and a slight bump
around the knee of the mass function. but the maximum deviation from the data
is less than 5 per cent. It seems that the emulator was unable to predict the dip,
and the best-fitting simulation falls outside of the predicted errors. Comparing
the predicted errors between the different resolutions, it is clear that the high-
resolution simulation has the largest predicted error. This is due to it using the
smallest box size. This causes the emulator prediction to be too "smooth" when
compared with simulation results. The deviation at the dip is less than the 1 σ
uncertainty due to cosmic variance. The small box size (100 Mpc)3 used for cal-
ibration at high resolution, limits the mass range that can be used to fit the gas
fractions to halo masses lower than 6×1013 M⊙. This leaves only two data points
to compare to. The agreement in the fitted range is however very good.

Comparing the best-fitting subgrid parameter values for the high-resolution
model to those for intermediate resolution (Table 2.2), we see that the stellar feed-
back requires about twice as much energy and about half as high a kick velocity.
This reflects the need for stronger stellar feedback when higher gas densities are
resolved and the fact that feedback can be efficient down to smaller wind veloc-
ities in the lower-mass haloes that remained unresolved at intermediate resolu-
tion. While the AGN heating temperatures are very similar, the high-resolution
simulations require a much smaller slope of the black hole accretion rate boost
factor, βBH = 0.038 (where zero corresponds to no boost) versus βBH = 0.514 at
intermediate resolution. Since the high-resolution simulation can resolve higher
gas densities, and hence higher black hole accretion rates, we do not need to boost

ing the subgrid parameters constant. The stellar mass bias changed from log10 b∗ = 0.031 to 0.026,
the cosmic variance bias changed from bCV = 1.014 to 0.995 and the HSE bias from bHSE = 0.745
to 0.743. The bias values changed by a negligible amount with respect to the 16th−84th percentile
confidence levels, for both b∗ and bHSE the change is less than 3 per cent of the 16th−84th percentile
range. For bCV the change is ∼ 15 per cent of the 16th−84th percentile range. The values we report
in Table 2.7 use the most up-to-date Driver et al. (2022) data.
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the accretion rate as much.

At low resolution the agreement with the data is also very good, with reduced
χ2
ν = 0.95. Now it is the stellar mass range that is very limited, M∗ ≈ 1011.17M⊙

to M∗ ≈ 1011.5M⊙, which includes only two data points. The larger box size of
(400 Mpc)3 allows for the use of the two Akino et al. (2022) weak lensing data
points as well as five X-ray data points for fitting the cluster gas fractions. How-
ever, the high-mass plateau of the gas fractions remains out of reach for this box
size. The comparison of the best-fitting subgrid parameter values of the low-
resolution model to those of the higher-resolution simulations (Table 2.2) is diffi-
cult to interpret because the low-resolution model requires a much lower thresh-
old density for star formation, a much higher black hole seed mass, and does not
include any stellar feedback.
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Figure 2.6: Comparison of the best-fitting models to the observed galaxy stellar
mass function (SMF; left column) at z = 0 and observed cluster gas fractions (right
column). The top, middle and bottom rows show results for high-, intermediate-
and low-resolution simulations, respectively. The observations are plotted as
points with error bars (black: Driver et al. (2022) SMF at z = 0, dark blue: com-
pilation of X-ray data at z = 0.1, dark magenta: Akino et al. (2022) weak lensing
data at z = 0.3). Each panel shows the best-fitting emulator prediction as a blue
curve, the emulator uncertainty as a blue shaded region, and the result from
a simulation using the best-fitting subgrid parameter values in a (100 Mpc)3,
(200 Mpc)3, and (400 Mpc)3 volume for high, intermediate, and low resolution,
respectively, as a red curve. For fgas,500c we only plot the best-fitting simulation
result at z = 0.1 in red, and leave out the result at z = 0.3 to avoid clutter. For the
cluster gas fractions, besides showing in blue the z = 0.1 emulator that should be
compared with the dark blue X-ray data, we also show the z = 0.3 emulator, in
magenta, that is used to fit the dark magenta Akino et al. (2022) weak lensing
data. The grey regions indicate the mass ranges that are excluded from the fit-
ting, see also Table 2.3. The model predictions are shown using dotted lines in
these excluded ranges. The vertical dotted line in the left panels indicates a mass
corresponding to ten stellar particles. The SMF and X-ray gas fraction data have
been shifted by the best-fitting observational bias factors (see Table 2.7), which
are however negligible for the SMF. The SMF from the best-fitting simulation in-
cludes Eddington bias (see §2.3.1) in line with how the emulator is trained. The
systematic errors given by the priors on the bias parameters are shown as points
with error bars in the top panels. At each resolution we obtain excellent agree-
ment between the emulator, a simulation with the best-fitting parameters, and
the observational data.

As we obtain a good fit to the same data for each of the three resolutions, we
conclude that we have good ’weak convergence’ between the three resolutions,
using the terminology of Schaye et al. (2015). The FLAMINGO suite includes
high-, intermediate-, and low-resolution simulations that were run with our fidu-
cial subgrid parameter values in volumes with side lengths of 1, 2.8, and 1 Gpc,
respectively. For a comparison of these models with other data, we refer to Schaye
et al. (2023).

2.6.4 Feedback variations

One of the goals of FLAMINGO is to investigate the impact of feedback on cos-
mological observables. In this section we show how we use emulators to cali-
brate simulations to produce gas fractions or SMFs that have been shifted away
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from their fiducial, observed values. We focus mostly on changes to the gas frac-
tions, as previous work has shown that baryon fractions in groups and clusters
anti-correlate with the baryonic suppression of the matter power spectrum on
the scales relevant for current and next generation surveys (e.g. Semboloni et al.,
2013; Van Daalen et al., 2020; Debackere et al., 2020; Salcido et al., 2023). For
clusters, the gas fractions dominate over the stellar fraction when computing the
baryon fractions (the stellar mass content of haloes becomes important at smaller
scales). While most of our variations use our fiducial thermal AGN feedback
model, we will also calibrate a model that uses kinetic, jet-like AGN feedback.

To quantify the effect of reasonable changes in the astrophysics, we include
a set of feedback variations in the simulation suite. These simulations should
at least bracket the uncertainty in the cluster gas fraction data, while fitting the
SMF data. Previous works created variations of subgrid physics based directly
on the values of certain subgrid parameters. For example, the BAHAMAS project
(McCarthy et al., 2018) varied the AGN heating temperature by ±0.2 dex, which
resulted in very small changes to the SMF and cluster gas fractions that roughly
bracketed the observational uncertainty. To arrive at the values of the subgrid pa-
rameters for our runs, we make use of the emulators and we will allow all fitted
subgrid parameters to vary. Our variations are based on systematically shifting
of the data, based on their uncertainties, making the variations less reliant on the
sub-grid model used. We also include models with gas fractions that are proba-
bly ruled out observationally, because we anticipate these will be useful to gain
insight into the effect of baryonic feedback on other cosmological observables.

The variations are run at intermediate resolution. We use the fiducial values
of the observational bias factors listed in Table 2.7. For the gas fraction variations,
the SMF data are kept the same except for one variation, where we systematically
reduce all observed stellar masses. The fgas data are shifted up by 2σ and down
by 2, 4 and 8σ for the fgas+2σ , −2σ , −4σ and −8σ models respectively, where σ
is the error obtained from bootstrapping for the X-ray data, or the error on the
fit for the weak lensing data from Akino et al. (2022), as discussed in §2.3.2. We
systematically shift all the data by Nσ under the assumption that the errors in
the gas fraction are mostly systematic and correlated. We shift in steps of 2 and
4σ instead of a smaller shift (for example 1σ ) as the cluster-to-cluster scatter is
much larger than the errors we found from bootstrapping (see §2.3.2). We also
create a models that vary the SMF. As the baryonic suppression is sensitive to the
total baryon fraction (see e.g. Salcido et al., 2023), we include these variations to
investigate the effect of changes in the baryon fraction at a constant gas fraction,
and to see the effect of changing the stellar fractions. For these variations, we
systematically shift the SMF data to lower masses according to the 1σ given by
the stellar mass bias (0.14 dex; §2.3.1). For the M*−1σ model we use the fiducial
gas fractions and for the fgas−4σ +M* − 1σ model we simultaneously shift the
X-ray and weak lensing gas fractions down by 4σ .
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Table 2.8: best-fitting values for the subgrid parameters for the feedback variations at intermediate resolution. The columns
list the name of the variation, the number of σ by which the observed fgas data was shifted, and for each parameter the median
and 16th to 84th percentile confidence level (CL), and the best-fitting (i.e. maximum likelihood) fiducial values. Note that for
the jet AGN model the seventh and eighth columns show vjet instead of the heating temperature, while for the other feedback
variations they show ∆TAGN.

fSN ∆vSN [km s−1] ∆TAGN [K] or vjet [km s−1] βBH
Variation σ Median+CL best-fitting Median+CL best-fitting Median+CL best-fitting Median+CL best-fitting

fgas+2σ +2 0.22+0.09−0.08 0.219 525+151−186 577 107.69
+0.16
−0.13 107.71 0.58+0.10−0.10 0.554

Fiducial 0 0.20+0.11−0.09 0.238 479+167−197 562 107.84
+0.18
−0.20 107.95 0.55+0.15−0.16 0.514

fgas−2σ -2 0.21+0.08−0.07 0.206 478+149−179 552 108.03
+0.14
−0.16 108.08 0.54+0.10−0.09 0.497

fgas−4σ -4 0.20+0.08−0.07 0.191 479+167−162 532 108.18
+0.13
−0.13 108.21 0.51+0.09−0.09 0.482

fgas−8σ -8 0.15+0.07−0.06 0.145 417+156−154 483 108.36
+0.09
−0.11 108.40 0.49+0.07−0.08 0.462

M*−σ 0 0.30+0.10−0.10 0.322 537+124−198 608 107.98
+0.14
−0.17 108.06 0.68+0.11−0.10 0.626

M*−σ + fgas−4σ -4 0.25+0.10−0.08 0.261 490+127−174 557 108.25
+0.13
−0.13 108.27 0.65+0.09−0.09 0.620

Jet 0 0.19+0.07−0.06 0.166 562+196−164 477 977+311−236 836 0.54+0.10−0.12 0.597

Jet + fgas−4σ -4 0.18+0.08−0.06 0.176 524+200−162 527 1949+238−251 1995 0.44+0.07−0.08 0.439
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Figure 2.7: Top left and right panels: The emulator predictions for the SMF and gas fractions, respectively, for the feedback
variations and the fiducial model (different colors, as indicated in the legend). The observations are shown as black points
with error bars. In the top corners of the panels we indicate the assumed systematic errors in the data from the priors on the
fitted biases. The bottom panels show the ratio of the emulator prediction and a (200 Mpc)3 simulation run with the same
parameters. In both panels the black dotted line indicates a ratio of one. For the SMF (fgas,500c), the black dot-dashed lines
indicate deviations of 1 per cent (5 per cent). We only show the cluster gas fraction emulator prediction at z = 0.1 and leave
out the z = 0.3 gas fraction results to avoid clutter. The excluded mass range for fitting is indicated by the grey regions (see
also Table 2.3.) We use the emulators to make a direct mapping between our subgrid physics models and systematic shifts in
the observations, based on the observational errors.
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The best-fitting subgrid parameter values for the feedback variations can be
found in Table 2.8. The changes in the subgrid parameters with respect to the
fiducial model are small. As expected, the AGN subgrid parameters bracket the
fiducial values, with the fgas−2σ model having a slightly higher AGN feedback
temperature. As could already be seen in Fig. 2.4, the gas fraction is very sensitive
to ∆TAGN, which varies by only 0.37 dex between the fgas+2σ and −2σ models, in
good agreement with BAHAMAS. The fgas−4σ and −8σ models follow this trend.
Changes in the gas fractions are driven mainly by changes in ∆TAGN. Going from
the fgas−4σ to theM*−1σ + fgas−4σ model, the biggest change is seen in fSNII and
βBH, as expected from Fig. 2.4. The increase in the BH accretion boost factor is
required to compensate for the removal of gas by the increased supernova energy.

The feedback models are compared with the fiducial model and the calibra-
tion data in Fig. 2.7. In the top two panels we show the emulator predictions for
the SMF and the gas fractions for each of the variations. Within the fitted mass
ranges there is excellent agreement for the SMF between all the different cluster
gas fraction variations. There is good agreement between fgas for the fgas−4σ and
the SMF−1σ + fgas − 4σ variations. In the bottom panels we compare the emula-
tor predictions to the results of (200 Mpc)3 simulations run with the best-fitting
parameters. For the SMF, we see that the emulator predictions are accurate at
around the per cent level, with only the jet model fgas−4σ deviating by ≈ 5 per
cent. For fgas, all predictions are accurate to ≈ 10 per cent, and most predictions
are accurate to within ≈ 5 per cent. The accuracy is slightly better than the ex-
pected emulator accuracy from cross-checks (see Table 2.6). We conclude that by
allowing for small adjustments to four subgrid parameters, we are able to vary
specific observables while keeping others constant.

In addition to the parameter variations, we also calibrate a different imple-
mentation of AGN feedback. As described in §2.2.3 this model uses kinetic bipo-
lar kicks instead of thermal injections to distribute AGN feedback energy around
accreting BHs8. As the subgrid model differs fundamentally from the fiducial
model, we run a new Latin hypercube with 32 intermediate-resolution simula-
tions in (200 Mpc)3 volumes. The subgrid parameter ranges for this hypercube
can be found in Table 2.9. To construct the emulator, we again follow the pre-
scription of Section 2.4 and we again verify its accuracy using cross-checks (see
Table 2.6). The goal is to have a simulation with a different implementation of
AGN feedback calibrated to the same observables as the fiducial implementation.
We therefore use the same fitting limits, methods and likelihoods as for the fidu-

8Due to a bug, the calibration of the jet models was done using a version of the model where the
jets are launched along the z-direction of the simulation box, instead of along the spin axis of the black
hole. We have verified that this leads to small differences, in agreement with the results reported by
Huško et al. (2023), who showed that the directionality of the jets has little effect. When using the
correct implementation, the agreement with the emulator of the SMF becomes slightly better for both
runs that use jets; and for fgas, the agreement only worsens outside the range used for calibration.
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cial intermediate-resolution model. For the jet model we fit to both the fiducial
data and to the perturbed data used to calibrate the fgas−4σ model. The resulting
medians and best-fitting values can be found in Table 2.8.

The jet models are shown as the green lines in Fig. 2.7. They show some
differences from the fiducial thermal AGN feedback models. The jet models fit
the knee of the SMF slightly better by having slightly more galaxies with M∗ ≈
1010.7M⊙. The difference at the very low-mass end of the SMF, below the fitted
range, is due to the fact that the bug in the threshold of star formation for zero
metallicity gas (see footnote 3) was fixed for the jet models. The fgas−4σ jet model
also has a significant reduction in the number of galaxies with masses above our
fitting limit, thus yielding a SMF with a steeper high-mass cut off. However, the
bottom panel suggests that this is at least partially explained by the fact that the
emulator under-predicts the number density by a few per cent. Compared with
the thermal AGN models fit to the same data, the jet models predict higher gas
fractions in groups (M500c ∼ 1013M⊙), where there is, however, no observational
data. From the bottom panels we can see that for fgas the accuracy of the jet
emulator does not differ significantly from the emulator for the thermal AGN
feedback models.

2.7 Conclusions

In order to fully exploit the large-scale structure data that will become available
with surveys like Euclid and LSST, we need to acquire a deeper understanding of
how baryonic effects, like AGN and stellar feedback, impact the matter distribu-
tion. The most self-consistent way of experimenting with these effects is through
the use of cosmological hydrodynamical simulations. The FLAMINGO project
provides such simulations in volumes sufficiently large to study the evolution of
large-scale structure and massive galaxy clusters for different numerical resolu-
tions, cosmologies and astrophysical models.

As feedback processes originate on unresolved scales, we have to add them via
subgrid prescriptions. However, because these subgrid models are theoretically
not well constrained, they need to be calibrated to reproduce a relevant set of
observables. Previous simulation projects like EAGLE (Schaye et al., 2015; Crain
et al., 2015), IllustrisTNG (Pillepich et al., 2018), BAHAMAS McCarthy et al.
(2017, 2018) and SIMBADavé et al. (2019) achieved good agreement with data by
varying subgrid parameters by hand until the simulation lined up with the target
observations. However, for cosmology a more robust and objective calibration
method is desirable, particularly if it can also be used to predict the effect of
subgrid variations that have not been simulated directly.

To create a robust method of calibration, we make use of machine learn-
ing, specifically Gaussian process emulators. Instead of emulating the effects
of changes in the cosmological parameters, which is becoming a common ap-
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plication of machine learning in cosmology, we emulate the observables that we
want to match to observations as a function of a set of subgrid parameters. For
three different numerical resolutions, which span a factor of 64 in particle mass,
we train an emulator on 32 input simulations where we vary the four most im-
pactful subgrid parameters, two of which relate to stellar feedback and two of
which relate to AGN feedback (Section 2.2). In addition, we train an emulator for
another intermediate-resolution implementation of AGN feedback, which uses
jets (i.e., directed kinetic feedback) instead of injecting the feedback energy ther-
mally. At each resolution we run simulations with 3603 gas particles, implying
a (100 Mpc)3, (200 Mpc)3 and (400 Mpc)3 volume for FLAMINGO high [m8],
intermediate [m9] and low [m10] resolution, respectively. We then use MCMC
to fit the emulator to carefully selected observational data. We repeat the same
procedure for each resolution, and only change the fitted mass ranges to account
for resolution and box size limitations. Additionally, we have created a set of
subgrid physics implementations based on fitting the emulators to the data after
systematically shifting it by Nσ .

We calibrate to the observed low-redshift galaxy stellar mass function (SMF)
from the GAMA survey and a compilation of group and cluster gas fraction mea-
surements based on X-ray and weak lensing data. A novel aspect of our approach
is that we also fit for possible observational biases (i.e., systematic errors). We
account for biases in the stellar mass and the cluster mass inferred from X-ray
data under the assumption of hydrostatic equilibrium, as well as for the effect
of cosmic variance on the SMF. In addition, we account for the effect of random
errors in the observed stellar mass on the SMF (i.e., Eddington bias) by randomly
perturbing the simulated stellar masses(Section 2.3). The observational biases
are only fit during the calibration of the intermediate-resolution simulations and
the best-fitting values are then also applied to the other resolutions.

Our main conclusions are:

• By carefully setting up the subgrid parameter space, we were able to train
emulators that are more accurate than the target observational constraints
(Fig. 2.3).

• The emulator framework enables simultaneously fitting for subgrid param-
eters and observational biases. For FLAMINGO, the posteriors found for
the biases are driven by and in agreement with the priors. We find a negli-
gible value for the stellar mass and cosmic variance error, and a hydrostatic
bias of bHSE = 0.743.

• Emulators can be used to make parameter sweeps, i.e. plots showing how
the trained relation depends on the value of a single subgrid parameter
(Fig. 2.4). As the emulators give the continuous response of the trained
relation to changes in subgrid parameters, emulators can be used to gain a



2

2.7. Conclusions 91

deeper understanding of how the observable relations are affected by the
subgrid models.

• The parameter space that we explore is devoid of major degeneracies be-
tween the subgrid parameters. The emulator+MCMC framework finds a
single best-fitting solution (Fig. 2.5). We note that this is partially by con-
struction, as parameters that hadmajor degeneracies were omitted from the
parameter space (see Section 2.2). For future work it might be interesting
to see if these degeneracies can be solved by fitting the model to additional
observational data.

• At each resolution we find excellent agreement between the best-fitting
model and the calibration data (Fig. 2.6).

• The emulator framework can be used to map observational uncertainties
onto changes in subgrid parameters. By fitting the emulator to variations
in gas fractions and the SMF, we produce a set of simulations for which spe-
cific observables are varied while keeping others constant (Fig. 2.7). As the
model variations are directly tied to observations, the resulting simulations
can be used to quantify the effect of uncertainties in the calibration data on
the predictions for other observables.

• We used the emulator framework to calibrate a different implementation
of the model, which we did for kinetic AGN feedback (in contrast with the
thermal AGN feedback used our fiducial model; Fig. 2.7). By making differ-
ent models match the same calibration observations, the simulations can be
used to quantify the uncertainty in predictions for other observables due to
uncertainties in the underlying physics.

We have used Gaussian process emulators to create a close link between sub-
grid models and observations. By creating a robust statistical framework for cal-
ibration, future hydrodynamical simulations will be able to use available and
upcoming data to constrain the subgrid physics and to quantify the uncertainty
in the predictions of simulations that remains after the models have been con-
strained to fit particular sets of data. In this work we have focused on calibrating
simulations using different resolutions, and a single variation of the implementa-
tion of AGN feedback. For future work the same framework could be used to get
agreement between different simulation codes and subgrid models for specific
observables. In this way we could improve our understanding of the degenera-
cies between different methods and the uncertainties in their predictions.

In the companion paper Schaye et al. (2023) we present the large-volume
FLAMINGO simulations that use the calibrated parameter values that we ob-
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tained here. More information on and visualisations of the FLAMINGO simula-
tions can be found on the website.9
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2
Appendix

2.A Different apertures

Fig. 2.8 compares the SMF results for different choices of 3D apertures with radii
of 30, 50 (our fiducial aperture) and 100 kpc. For each non-fiducial aperture we
retrain the emulator on the SMFs obtained with the different aperture. The new
emulator, based on a different aperture, is then evaluated at the fiducial subgrid
parameter values. We do not refit the SMF for each aperture, because we wish to
quantify the effect of the aperture size on the SMF predicted by a given simula-
tion. The choice of aperture only has an impact at the largest stellar masses (see
also Schaye et al. 2015). For our analysis this implies that the main effect of an
increase in aperture would be a slight increase of the slope of the density depen-
dence of the AGN accretion rate boost factor. However, for the fitted mass range
this effect is relatively small. The effect of using a mass measurement method
more similar to that used by observers may be larger (e.g. De Graaff et al., 2022),
but such a comparison is not feasible at the resolution of our simulations.

2.B Posteriors for high- and low-resolution

The posteriors for low resolution are shown in Fig. 2.9. There is a degeneracy be-
tween the two parameters. Both parameters are sampled well within our chosen
ranges. Even though the range for the heating temperature is much wider than
for the other resolutions, we find that the best-fitting value is in the range where
AGN feedback is well sampled, and does not suffer from catastrophic numerical
overcooling (see ğ2.2.3).

The posteriors for the high-resolution simulation are shown in Fig. 2.10. Sim-
ilar to the intermediate-resolution posteriors we find a best-fitting model within
the chosen parameter ranges. The best-fitting value for βBH is quite close to the
edge, partly due to a degeneracy between βBH and∆vSN. The high-resolution pos-
teriors are more degenerate than for intermediate-resolution. This is likely due
to the fact that we fit a much broader range of the SMF, making it more important
to get the balance between stellar and AGN feedback right. The posteriors show
that there are some significant degeneracies in how this problem can be solved.
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Figure 2.8: The effect on the SMF of choosing a different aperture when mea-
suring stellar masses in the simulation. For each line we set up a new emulator
based on the simulation results for the corresponding aperture. Each emulator
is then used to predict the behaviour at the best-fitting parameter values for the
fiducial 50 kpc aperture. Differences between the apertures start to occur above
a stellar mass of 1011 M⊙

.
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Table 2.9: Subgrid parameter ranges for the Latin hypercube used to train the jet
model emulators.

Parameter Prior
fSN [0.0,0.5]
∆vSN [km s−1] [102.3,103]
vjet [km s−1] [102.7,103.5]
βBH [0.1,0.7]

Note that for both and high and low resolution we have fixed the biases to the
values for for intermediate resolution, see §2.6.2.

2.C Parameter ranges for the AGN Jet model

The subgrid parameter ranges for the Latin hypercube that was used to train the
emulators for the AGN jet model can be found in Table 2.9.

2.D swift-emulator: A Python package for emula-
tion of simulated scaling relations - Roi kugel
& Josh Borrow

The following section has been adapted from Journal of Open Source Software,
7(72), 4240, https://doi.org/10.21105/joss.04240

2.D.1 Summary

swift-emulator is a Python toolkit for using Gaussian processes machine learning
to emulate scaling relations from cosmological simulations. swift-emulator focuses
on implementing a clear, easy to use design andAPI to remove the barrier to entry
for using emulator techniques. swift-emulator provides tools for every step: the
design of the parameter sampling, the training of the Gaussian process model,
and validating and analysing the trained emulators. By making these techniques
easier to use, in particular in combination with the SWIFT code (Schaller et al.,
2018b; Borrow & Borrisov, 2020), it will be possible use fitting methods (like
MCMC) to calibrate and better understand theoretical simulation models.

2.D.2 Statement of need

One of the limits of doing cosmological (hydrodynamical) simulations is that any
simulation is limited to only a single set of parameters, be these choices of cos-
mology, or the implemented physics (e.g., stellar feedback). These parameters

https://doi.org/10.21105/joss.04240
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Figure 2.9: The posterior distributions of the model parameters resulting from
fitting the emulator for low-resolution simulations to the observed SMF and clus-
ter gas fractions. The parameters shown are the AGN feedback temperature jump
∆TAGN and the logarithmic slope of the density dependence of the black hole ac-
cretion rate boost factor, βBH. The two subgrid parameters are described in Sec-
tion 2.2. The black contours show the 68 and 95 per cent confidence levels. The
panels along the diagonal show the one dimensional probability density for each
parameter. In these plots the three vertical lines indicate the 16th, 50th and 84th
percentiles. The solid, red circle indicate the maximum likelihood values, which
were used for the fiducial model. There is some degeneracy, but there is a clear
single best-fitting solution.
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Figure 2.10: The posterior distributions of the model parameters resulting from
fitting the emulator for high-resolution simulations to the observed SMF and
cluster gas fractions. The parameters shown are the stellar feedback energy, fSN,
the stellar feedback kick velocity, ∆vSN, the AGN feedback temperature jump,
∆TAGN and the logarithmic slope of the density dependence of the black hole
accretion rate boost factor, βBH. The four subgrid parameters are described in
Section 2.2. The black contours show the 68 and 95 per cent confidence levels.
The panels along the diagonal show the one dimensional probability density for
each parameter. In these plots the three vertical lines indicate the 16th, 50th
and 84th percentiles. The solid, red circles indicate the maximum likelihood val-
ues, which were used for the fiducial model. The results show some moderate
degeneracies, but the individual parameters each have a clear peak close to the
best-fitting values.
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need to be tuned to calibrate against observational data. At odds with this, cos-
mological simulations are computationally expensive, with the cheapest viable
runs costing thousands of CPU hours, and running up to tens of millions for
the largest volumes at the highest resolutions. This makes the use of cosmolog-
ical simulations in state-of-the-art fitting pipelines (e.g., MCMC), where tens of
thousands to millions of evaluations of the model are required to explore the pa-
rameter space, computationally unfeasible. In order to get a statistical grip on
the models of cosmology and galaxy formation, a better solution is needed.

This problem is a major limiting factor in "calibration" of the sub-resolution
(subgrid) models that are often used. Works like Illustris (Vogelsberger et al.,
2014), EAGLE (Crain et al., 2015), BAHAMAS (McCarthy et al., 2017), and
Illustris-TNG (Pillepich et al., 2018) are able to "match" observed relations by
eye, but a statistical ground for the chosen parameters is missing. This poses a
significant problem for cosmology, where a deeper understanding of our subgrid
models will be required to interpret results from upcoming surveys like LSST
and EUCLID.

A solution here comes through the use of machine learning techniques. Train-
ing ’emulators’ on a limited amount of simulations enables the evaluation of a
fully continuous model based on changes in the underlying parameters. Instead
of performing a new simulation for each required data-point, the emulator can
predict the results a simulation would give for that set of parameters. This makes
it feasible to use methods like MCMC based purely on simulation results.

2.D.3 Emulator Requirements

For emulation in hydro simulations we want to use Gaussian processes to emulate
scaling relations in the following form:

GP (y,x, θ⃗). (2.28)

We want to emulate scaling relations between a dependent variable y, as a
function of the independent variable x and the model parameters θ⃗. For each
simulation many of these individual scaling relations can be calculated, for ex-
ample the sizes of galaxies relative to their stellar mass, or the mass fraction of
gas in galaxy clusters as a function of their mass. The individual object properties
used in scaling relations can be measured from each individual simulation using
a tool like VELOCIraptor (Elahi et al., 2019a).

Between simulations, the underlying parameters θ⃗ can change, for instance
the energy injected by each supernovae. Using an emulator, we want to be able
to see how many scaling relations change as a function of these parameters like
the supernova strength.

Emulators do not make a distinction between the independent x and the
model parameters θ⃗. An emulator will model y as a function of the combined
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vector θ⃗′ = (x, θ⃗). Getting the training data in the correct format can pose a sig-
nificant challenge.

In order to save computational time, it is important to have an efficient sam-
pling of the parameter space represented by θ⃗. It may be more efficient to search
the parameter space in a transformed coordinate space, like logarithmic space, if
the expected viable range is over several orders of magnitude.

Once the emulator is working it can be challenging to perform standard tests
to validate it. Things like cross-checks or parameter sweeps have to be imple-
mented by hand, making proper use of emulators more difficult.

2.D.4 Why swift-emulator?

Many packages exist for Gausian process emulation, like george (Ambikasaran
et al., 2015b, this provides the basis for swift-emulator), gpytorch (Gardner et al.,
2018) and GPy (GPy, 2012). Additionally, a package like pyDOE (Baudin et al.,
2012) can be used to set up efficient parameter samplings. However, most of
these packages operate close to theory, and create a significant barrier for entry.

With swift-emulator we aim to provide a single ‘python‘ package that inter-
faces with available tools at a high level. Additionally we aim to streamline the
processes by providing i/o tools for the SWIFT simulation code [@Schaller2018;
@Borrow2020]. This is done in a modular fashion, giving the users the freedom
to change any steps along the way. swift-emulator provides many methods that
work out of the box, removing the barrier to entry, and aim at making emula-
tor methods easy to use. The more wide-spread use of emulators will boost the
potential of future simulation projects.

swift-emulator combines these tools to streamline the complete emulation pro-
cess. There are tools for experimental design, such as producing Latin hyper-
cubes or uniform samplings of n-dimensional spaces. For simulations performed
with SWIFT, parameter files can be created and simulation outputs can be loaded
in through helper methods in the library. The results can then be used to train
an emulator that can make predictions for the scaling relations in the simulation.
There are also methods to perform cross-checks to find the accuracy of the em-
ulator. In addition, for investigating the impact of individual parameters on a
given scaling relation, there is a simple method to do a parameter sweep imple-
mented. Finally, there are tools for comparing the emulated relations with other
data, from a simple χ2 method to complex model discrepancy structures.

swift-emulator is currently being used for two of the flagship simulation
projects using the SWIFT simulation code, ranging across five orders of magni-
tude in mass resolution. The package is being used to allow modern simulations
to reproduce key observations with high accuracy.

Finally swift-emulator has many options to optimise the methods for specific
emulation problems. While the focus so far has been on integration with SWIFT,
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the underlying API is structured in a simple enough way that using the emulator
with a different simulation code is easy. swift-emulator is currently being used
for simulation projects outside of the SWIFT project for the calibration of post-
processing models.
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Abstract

Galaxy clusters provide an avenue to expand our knowledge of cosmology
and galaxy evolution. Because it is difficult to accurately measure the total
mass of a large number of individual clusters, cluster samples are typically
selected using an observable proxy for mass. Selection effects are therefore a
key problem in understanding galaxy cluster statistics. We make use of the
(2.8 Gpc)3 FLAMINGO hydrodynamical simulation to investigate how selec-
tion based on X-ray luminosity, thermal Sunyaev-Zeldovich effect or galaxy
richness influences the halo mass distribution. We define our selection cuts
based on the median value of the observable at a fixed mass and compare the
resulting samples to a mass-selected sample. We find that all samples are
skewed towards lower mass haloes. For X-ray luminosity and richness cuts
below a critical value, scatter dominates over the trend with mass and the
median mass becomes biased increasingly low with respect to a mass-selected
sample. At z ≤ 0.5, observable cuts corresponding to median halo masses be-
tweenM500c = 1014 and 1015 M⊙ give nearly unbiased median masses for all
selection methods, but X-ray selection results in biased medians for higher
masses. For cuts corresponding to median masses < 1014 at z ≤ 0.5 and for
all masses at z ≥ 1, only Compton-Y selection yields nearly unbiased median
masses. Importantly, even when the median mass is unbiased, the scatter is
not because for each selection the sample is skewed towards lower masses
than a mass-selected sample. Each selection leads to a different bias in sec-
ondary quantities like cool-core fraction, temperature and gas fraction.

3.1 Introduction

Galaxy clusters are the largest virialized structures in the universe, and are found
at the intersections of the filamentary network of the cosmic web. Following hier-
archical structure formation, clusters are the last objects to form. Both the num-
ber density of clusters as a function of cluster mass, i.e. the halo mass function
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(HMF), and the properties of individual clusters are sensitive to the underlying
cosmological model (for a review see Allen et al., 2011).

The current standard model of cosmology involves a spatially flat universe
dominated by dark energy and cold dark matter, and is denoted as ΛCDM.
Recent weak lensing and distance ladder measurements have exposed tensions
between the ΛCDM parameters recovered by measurements of the cosmic
microwave background (e.g. Planck Collaboration et al., 2020) and observations
of the late-time universe (e.g. Heymans et al., 2021; Abbott et al., 2022; Riess
et al., 2022; Miyatake et al., 2023). Galaxy clusters are an independent probe
that can help further investigate these tensions.

The cluster cosmology probe that is used the most is cluster counts, which are
parameterised via the HMF. The HMF gives the abundance of clusters as a func-
tion of their total mass within some 3D aperture, which is generally not directly
observable. Instead, measurements are limited to indirect probes of the total
(3D) mass of the cluster, and selection effects have to be accounted for. Clusters
are selected based on their Sunyaev-Zeldovich signal (SZ) (e.g. Planck Collabo-
ration et al., 2016a; Bocquet et al., 2019; Bleem et al., 2024), X-ray luminosity
(e.g. Pacaud et al., 2018; Chiu et al., 2023; Ghirardini et al., 2024), galaxy rich-
ness (e.g. Rykoff et al., 2014, 2016; Black & Evrard, 2022) combined with weak
lensing signal (e.g. Costanzi et al., 2019). Future data releases of eRosita, and
upcoming weak lensing missions like Euclid (Artis et al., 2022) will lead to an
enormous increase in the number of detected clusters. With increased statistics
the cosmology constraints will become much tighter.

Systematic differences between X-ray- and SZ-selected samples are well doc-
umented observationally. Lovisari et al. (2017) reports finding an excess of dis-
turbed clusters in SZ selected samples with respect to X-ray-selected samples.
Additionally, Andrade-Santos et al. (2017) and Rossetti et al. (2017) report a
larger fraction of cool-core objects for X-ray selection compared to SZ selection.
Chon & Böhringer (2017) argue that many of the differences in results for differ-
ent samples are due to the difference between flux- and volume-limited selections
rather than the specific selection observable used. There are quite a few compar-
isons of X-ray vs richness selected samples. In general, good agreement is found
for the mass-luminosity relation, luminosity-richness relation, disturbed frac-
tion and merger fraction when comparing X-ray and richness selected samples
(e.g. Ramos-Ceja et al., 2022; Upsdell et al., 2023), but slight differences might
exist in the X-ray luminosity-temperature relation (Giles et al., 2022). Addition-
ally, Ota et al. (2023) find that clusters selected on having a high galaxy richness
have a smaller fraction of relaxed clusters compared to X-ray selected samples.
In general, galaxy richness selected samples contain a much larger number of
clusters than X-ray selected samples. Grandis et al. (2021) find that this might
originate from the fact that the contamination in richness selected samples in-
creases towards lower values of richness. In a comparison between weak lensing
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shear selected sources and X-ray selected sources by Willis et al. (2021), a large
fraction of the sources is not matched between the catalogues. This is partially
due to projection effects boosting the shear, but also because extended high flux
sources were missed due to the morphological selection criteria and the XMM
beam. Marini et al. (2024) show using mock observations that eROSITA is unable
to find all group size objects, with a bias towards detecting objects with a high
relative gas fraction. These differences show that every selection has a unique
selection function.

Understanding the influence of selection effects on derived cluster proper-
ties is important beyond cluster cosmology. For example, scaling relations for
clusters, in particular their baryon and gas content, provide constraints on how
baryons impact the matter power spectrum (e.g. Chisari et al., 2019; Aricò et al.,
2021; Giri & Schneider, 2021; Debackere et al., 2021; Salcido et al., 2023). Cur-
rent measurements of the gas fraction in clusters (as collated by Kugel et al.,
2023) indicate that selection effects start to dominate for haloes around the group
mass of M500c ≲ 1013.5 M⊙.

The careful modelling of selection functions is one of the main ingredients of
cosmological inference with cluster counts. As shown by Mantz (2019) a good
grip on both the selection criteria and the mass-observable relation is necessary.
In order to do unbiased cosmology inference, proper modelling of the observ-
able relations and the effects of the selection procedures is key (Angulo et al.,
2012). Power law relations with scatter are commonly assumed to relate observ-
ables to masses (e.g. Rozo et al., 2014; Evrard et al., 2014; Planck Collaboration
et al., 2016a; Pacaud et al., 2018; Grandis et al., 2020; Chaubal et al., 2022). Es-
pecially for observations probing lower masses, these assumptions might break
down, and lead to biased results. Recent cosmological inferences often combine
X-ray or SZ selection with scaling relations based on lensing or richness (Boc-
quet et al., 2024; Clerc et al., 2024; Ghirardini et al., 2024), leading to additional
complexity when modelling the selection function. A solution is to predict quan-
tities that are directly observable. One candidate is the aperture lensing mass, as
discussed by Debackere et al. (2022a,b). Similarly, Andreon et al. (2024) intro-
duce the X-ray surface brightness within 300 kpc as a promising candidate that
reduces observational biases when compared with X-ray, SZ or galaxy richness
selected samples.

Cosmological constraints are typically inferred by comparing observed clus-
ter counts to results based on (emulators of) the HMF of dark matter only simu-
lations (e.g. Tinker et al., 2008; Bocquet et al., 2020). However, baryonic physics
can lead to biases (e.g. Debackere et al., 2021). Additionally, dark matter only
simulations cannot self-consistently model the gas that is needed to predict X-ray
and SZ observables. As hydrodynamical simulations are computationally more
expensive than dark matter only simulations, some of the state-of-the-art sim-
ulations like EAGLE (Schaye et al., 2015), Horizon-AGN (Kaviraj et al., 2017),



3

110 Chapter 3. FLAMINGO: Cluster selection effects

IllustrisTNG (Pillepich et al., 2018) and Simba (Davé et al., 2019) do not sample
volumes sufficiently large to contain a representative sample of clusters. Simu-
lations like BAHAMAS (McCarthy et al., 2017), MilleniumTNG (Pakmor et al.,
2023) have volumes large enough to investigate typical clusters at low redshift,
but for converged statistics for the halo mass distributions even larger volumes
are needed. While the lowest-resolution simulations of the Magneticum suite
(Hirschmann et al., 2014) have large volumes, so far only BAHAMAS uses sub-
grid models that have been calibrated to reproduce the gas fractions of clusters.
Cosmological hydrodynamics simulations can be extended to the cluster range
by making use of zoom-in simulations (e.g. Barnes et al., 2017; Bahé et al., 2017;
Hahn et al., 2017; Cui et al., 2018; Pellissier et al., 2023; Nelson et al., 2023).
While zooms enable simulating samples of massive clusters without the need to
model very large volumes, they require selecting a sample from a large volume
dark matter only simulation. Because a volume-limited sampled cannot be con-
structed from zooms, they cannot yield an unbiased study of selection effects.

For this work we make use of the FLAMINGO simulations (Schaye et al.,
2023; Kugel et al., 2023). FLAMINGO is a suite of large-volume cosmological
hydrodynamical simulations in box-sizes with side-lengths of 1.0 and 2.8 Gpc.
At a resolution of mgas = 1.07× 109 M⊙, using 50403 gas particles, the (2.8 Gpc)3

FLAMINGO box is the largest cosmological hydrodynamics simulation evolved
to z = 0. Additionally, FLAMINGO includes models that vary the resolution, cos-
mology, and feedback strength in boxes of (1.0 Gpc)3. The cluster gas fractions
and stellar mass function of the fiducial and feedback variations are calibrated to
shifted observations.

The FLAMINGO simulations have been shown to be in good agreement with
observations of hot gas in groups and clusters (Schaye et al., 2023; Braspenning
et al., 2023). In particular, Braspenning et al. (2023) find that the X-ray luminos-
ity, temperature and thermal SZ scaling relations are in good agreement with the
data at all redshifts. The thermodynamic profiles also agree well with the ob-
servations, although the metallicities are too high in cluster cores. Braspenning
et al. (2023) also find that the cool-core fractions are difficult to compare with ob-
servations, as they are very dependent on the measure used, and typically based
on the properties of the gas at radii near or below our resolution limit, but that
they are in agreement with other simulation projects. The cool-core fractions
vary more strongly between the FLAMINGO feedback variations than is the case
for the scaling relations and the outer thermodynamic profiles.

The simulation’s very large volume, containing 461 (4100) clusters of mass
M500c

1> 1015 M⊙(5× 1014 M⊙) at z = 0, the agreement with cluster observations,
as well as the availability of convergence tests and model variations, make

1M500c is the mass enclosed by a sphere with radius R500c, which is defined as the radius of a
sphere centered on a halo within which the average density is 500 times the critical density.
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FLAMINGO ideal for investigating the impact of selection effects on cluster
counts.

We will compare selections based on X-ray luminosity, integrated thermal SZ
effect and galaxy richness. We will contrast these selections with mass-selected
samples for different redshifts. We will perform all these selections on theoretical
quantities, without applying any other observational biases, projection effects, or
noise. Our results are thus for a best-case scenario as selection effects are likely
to become stronger when the sample selection is forward modelled using virtual
observations. We choose to limit this work to theoretical quantities to increase
the interpretability and because further steps towards forward modelling require
choices that are survey specific, which will make the results less general. This is
also why we leave an investigation of lensing masses to future work, as lensing
only works in projection and requires the specification of a survey-specific red-
shift distribution of lenses galaxies. In future work we plan to model selection
effects for specific observables and surveys by creating virtual observations based
on FLAMINGO’s lightcone output.

This paper is structured as follows: In Section 3.2 we discuss the FLAMINGO
simulations, the quantities we select on and our definition of the sample mass
bias, in Section 3.3 we present our results and we conclude and summarise our
findings in Section 3.4.

3.2 Methods

In this section we describe the methods and data used. We discuss the
FLAMINGO simulations and how we obtain halo catalogues in Section 3.2.1.
The definitions used for the different quantities are described in Section 3.2.2 and
the metrics with which we quantify the quality of the selections are described in
Section 3.2.3.

3.2.1 FLAMINGO

This work makes use of the FLAMINGO simulations, described in detail by
Schaye et al. (2023). FLAMINGO (Full-hydro large-scale structure simulations
with all-sky mapping for the interpretation of next generation observations) is a
suite of cosmological hydrodynamics simulations in large volumes with varia-
tions in baryonic feedback, cosmology, box size and resolution. In this work we
make use of the simulations run at intermediate resolution (mgas = 1.07×109 M⊙)
in a volume of (2.8 Gpc)3 which consist of 2×50403 gas and dark matter particles,
and 28003 neutrino particles. The full output consists of 79 snapshots, of which
we will use the snapshots at z = [0,0.3,0.5,1.0,2.0].

The FLAMINGO simulations use the open source code Swift (Schaller et al.,
2024). The simulations make use of the SPHENIX SPH scheme (Borrow et al.,
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2022) with a Wendland (1995) C2 kernel. Neutrinos are simulated using the δf
method (Elbers et al., 2021). The ICs are generated using a modified version of
Monofonic (Hahn et al., 2021; Elbers et al., 2022). The simulations use the ‘3x2pt
+ all external constraints’ cosmology from the dark energy survey year 3 results
of Abbott et al. (2022) (Ωm = 0.306, Ωb = 0.0486, σ8 = 0.807, H0 = 68.1, ns =
0.967). Simulations with different cosmologies are available but not used in this
work.

FLAMINGO includes subgrid models for element-by-element radiative
cooling and heating (Ploeckinger & Schaye, 2020), star formation (Schaye &
Dalla Vecchia, 2008), stellar mass loss (Wiersma et al., 2009; Schaye et al.,
2015), feedback energy from supernova (Dalla Vecchia & Schaye, 2008; Chaikin
et al., 2022b,a), seeding and growth of black holes, and feedback from active
galactic nuclei (Springel et al., 2005; Booth & Schaye, 2009; Bahé et al., 2022).
The fiducial models use a thermal model for AGN (Booth & Schaye, 2009), but
we have two variations that use kinetic jets (Huško et al., 2022) (for a detailed
description see Schaye et al., 2023). As for BAHAMAS, the important simulation
parameters are set to match the observed z = 0 galaxy stellar mass function
(Driver et al., 2022) and a compilation of data of gas fractions in clusters (Kugel
et al., 2023). Unique to the FLAMINGO simulations is the method used to
calibrate the subgrid physics. For FLAMINGO these parameters are fit to the
observations by making use of emulators, as described by Kugel et al. (2023).
This procedure is also used to constrain a set of feedback variations that skirt
error bars on the calibration data. The variations are denoted by the change in
the observations they are matched to. "fgas±Nσ " denotes runs where the gas
fraction is shifted up or down by Nσ , "M*−σ " denotes runs where the stellar
mass function is shifted to lower masses by 1σ and "Jet" denotes runs where AGN
feedback is implemented in the form of kinetic jets instead of thermally-driven
winds.

We identify cosmic structure using a recently updated version (see Forouhar
Moreno et al. in prep) of the Hierarchical Bound Tracing algorithm (HBT+, Han
et al., 2018), which leverages hierarchical structure formation to identify sub-
structures more robustly than traditional halo finders. In short, it identifies struc-
tures as they form in isolation, by subjecting particles within spatial friends-of-
friends (FOF) groups to an iterative unbinding procedure. The particles asso-
ciated to these self-bound objects are tracked across outputs to provide a set of
candidate substructures at later times. This allows the identification of satel-
lites, as the particle memberships are retained once they have been accreted by
the FOF of a more massive halo. Finally, each candidate substructure is subject
to additional self-boundness and phase-space checks to decide whether it is still
resolved, or if it has merged or disrupted. The HBT+ catalogue is further pro-
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cessed by the Spherical Overdensity and Aperture Processor (SOAP2; McGibbon
et al. in prep) , which computes a large selection of halo properties in a range of
apertures. For this work we use properties inside R500c, which is defined as the
radius within which the enclosed density is 500 times the critical density. R500c
defines the massM500c which is defined as the mass within R500c. Because obser-
vational studies of clusters focus on centrals, we consider only central galaxies,
as identified by VR.

3.2.2 Observables used for selection

The X-ray luminosity within R500c is defined as the intrinsic luminosity within
the Rosat 0.5-2.0 keV broad band in the observer frame. This excludes star form-
ing gas and gas at low temperatures (T < 105 K). We do not attempt to exclude
satellites and sum over all particles within R500c. The X-ray luminosity of each
particle is computed by interpolating in redshift, density, temperature and indi-
vidual element abundances, based on output from the photo-ionisation spectral
synthesis code Cloudy (Ferland et al., 2017). A detailed description is given by
Braspenning et al. (2023). Because the luminosities are measured in the observer
frame, different parts of the rest-frame X-ray spectra will fall in the band at dif-
ferent redshifts.

We measure the thermal SZ Compton-Y in an aperture of 5 × R500c as done
in Planck Collaboration et al. (2016b), but in Appendix 3.B we show some of
the results also for an aperture of R500c. Compton-Y is computed by summing
over the Compton-Y contribution from each individual gas particle, yi , which is
stored in the snapshots. The contribution of the individual particles is computed
at run-time following

yi =
σT

mec2
ne,ikBTe,i

mi

ρi
, (3.1)

where σT is the Thomson cross section, me is the electron mass, c is the speed
of light, kB is the Boltzmann constant, ne,i is the electron number density, Te,i is
the electron temperature mi is the mass and ρi is the density of the particle with
index i. The electron number density and temperature are obtained from the
cooling tables. Selections based on the integrated Compton-Y are referred to as
SZ-selections.

For both the X-ray luminosity and Compton-Y signal we exclude particles
that in which AGN feedback energy has recently been directly deposited. This
can affect the X-ray luminosity, particularly for outlier haloes with a high lumi-
nosity, but has a negligible effect on Compton-Y. AGN feedback in the fiducial
FLAMINGO simulations is implemented thermally, heating a single particle to
a high temperature. Particles that are heated tend to be close to the core of the
halo and can have very high densities. This can lead to single particles having an

2https://github.com/SWIFTSIM/SOAP

https://github.com/SWIFTSIM/SOAP
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unrealistically large contribution to the total X-ray luminosity and Compton-Y
signal of the halo, potentially dominating over the rest of the halo, which would
be unphysical. To avoid this we ignore the contribution to the X-ray luminosity
and Compton-Y signal of particles that have been heated in the last 15 Myr and
that have a temperature in the range

10−1∆TAGN ≤ Ti ≤ 100.3∆TAGN, (3.2)

where Ti is the temperature of the particle and ∆TAGN is the change in tempera-
ture when a particles is heated by a black hole, which has a value of 107.78 K for
the fiducial FLAMINGO model.

We define richness by counting the number of satellite galaxies above a mass
threshold. Richness is defined as

λ =Nsats(M∗ > 1010.046 M⊙, r < R200c) + 1, (3.3)

where M∗ is the stellar mass within a 50 proper kpc spherical aperture and r is
the spherical radius from the centre of the cluster. These mass and radial limits
were chosen to be similar to the cuts used for Redmapper (Rykoff et al., 2014).
The mass limit is obtained from the fact that Redmapper uses a cut of 0.2L∗,
where L∗ is the luminosity at the knee of a Schecter fit to the luminosity func-
tion. We convert this to 0.2M∗ and use the mass at the knee from the stellar mass
function of Driver et al. (2022), which FLAMINGO is calibrated to match. The
Redmapper radial cut is a function of richness, and is optimised as part of the
richness finding process. We instead opt for R200c. This gives us the scaling of
the radius with halo mass that is implicit in the Redmapper radial cut, but with
a pre-defined radius for each halo. We pick R200c over R500c as the satellites in
the interior of the clusters are more likely to be affected by resolution-dependent
tidal disruption, and a larger radius leads to better convergence. For the values of
richness that we recover R200c is usually a factor of a few larger than the scale cut
used for Redmapper. As we do not fully forward model Redmapper, we choose to
use a larger 3D volume instead of a cylinder as this leads to a more well defined
sample. Qualitatively the differences between a 3D sphere and a 2D projection
will be small without forward modelling. The FLAMINGO simulations are cali-
brated to reproduce the galaxy mass function down to a stellar mass of 109.9 M⊙.
We wish to ensure that, on average, haloes down to M500c = 1013 M⊙ still have
more than one satellite above this mass, as a selection based on a richness of one
returns all haloes. Note that Redmapper itself makes a probabilistic prediction
for the number of satellites, and is hence not as affected by discreteness effects at
low galaxy richness, though it will still be affected by small-number statistics for
individual sources.
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3.2.3 Sample Selection

A selection based on observable A is defined as the set of haloes that have A > AC,
where AC is the selection limit. In order to compare selections based on different
observables, we find the corresponding selection limits by taking the median of
each observable at a fixed halo mass. In the case of an ideal scaling relation
without scatter, such a selection would be equivalent to a mass selection. To
compute this median value, we select haloes in a mass bin of 0.1 dex centred
around the chosen mass limit. We then compute the median X-ray luminosity,
thermal SZ signal or richness for these haloes. The cut, AC, is defined as

AC(MC) = median
[
A
(
10−0.05MC <M500c < 100.05MC

)]
, (3.4)

where MC is the target mass cut. By comparing sample selections A > AC(MC)
using the same target mass cut MC, we can investigate how selections based on
different observables deviate from the ideal case where A is exactly proportional
to M500c with no scatter.

Cluster count studies relate the counts in a sample to the HMF. To investi-
gate how much the sample deviates from a mass-selected sample, we define the
sample mass bias factor

bM500c
(a,MC) =

median(M500c|A > a)
median(M500c|M500c >MC)

− 1. (3.5)

Hence, bM500c
(a,MC) indicates the bias in themedianM500c of the sampleA > a

compared to a sample for which M500c > MC. A bias of zero indicates an unbi-
ased median mass. A negative (positive) bias indicates the median mass in the
sample is lower (higher) than for the mass-selected sample. The bias factors for
percentiles other than the median are defined analogously. Note that for the spe-
cial case a = AC the bias is only a function of MC. The bias has to be calculated
separately for each redshift. By defining the sample mass bias in this way, we
can quantify how much a cluster sample selected by a simple cut based on the
value of an observable is influenced by lower-mass haloes that up-scatter into the
sample. By investigating the bias in percentiles lower than the median, we will
further quantify the level of contamination by lower mass haloes in the sample.
We choose the 5th percentile as it strikes a good balance between probing the
lower mass tail of each sample without being too influenced by small number
statistics. The qualitative results are insensitive to the percentile picked, but in
general a lower percentile that is further from the median leads to a larger value
for the sample mass bias.

3.3 Results

In this section we compare the properties of cluster samples obtained with differ-
ent selection cuts A > AC, where A is mass M500c, X-ray luminosity L500c,0.5-2keV,
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Figure 3.1: The distribution of X-ray luminosity (top), integrated thermal SZ
Compton-Y (middle) and galaxy richness (bottom) at fixed mass at z = 0.3. The
different colours indicate different mass bins of width ±0.05 dex, around the cen-
tral value. The dotted lines show the best-fitting lognormal function and, for
X-ray and thermal SZ, the dot-dashed lines show the best-fitting lognormal plus
power-law distributions (Eq. 3.6). For lower masses the lognormal distributions
shift to smaller values and become narrower, while the power-law tails start at
lower values and become shallower. Assuming lognormal distributions would
underestimate the amount of upscatter from lower mass objects for a given cut
on the value of the chosen mass proxy.



3

3.3. Results 117

42.
0

43.
5

45.
0

lo
g 1

0
L 5

00
c,

0.
5

2k
eV

[e
rg

s
1 ]

6.4

5.6

4.8

4.0

3.2

lo
g 1

0
Y 5

×
R 5

00
c

13.
0

13.
5

14.
0

14.
5

15.
0

log10 M500c [M ]

0.0

0.5

1.0

1.5

2.0

lo
g 1

0

42.
0

43.
5

45.
0

log10 L500c, 0.5 2keV [erg s 1]

6.4 5.6 4.8 4.0 3.2

log10 Y5 × R500c

0.0 0.5 1.0 1.5 2.0

log10

Mass selection
SZ selection
X-ray selection
Richness selection

Figure 3.2: Corner plot showing the distribution of four different cluster prop-
erties A: M500c, X-ray luminosity, Compton-Y and galaxy richness, for differ-
ent selections of haloes in the 2.8 Gpc FLAMINGO fiducial volume at z = 0.3.
Different colours correspond to samples selected based on different quantities
A, as indicated in the legend. Each sample is defined to have A > AC where
AC = median[A(M500c = 1014 M⊙)]. The panels along the diagonal show his-
tograms, while the off diagonal panels show two-dimensional distributions with
each contour containing 95 per cent of the haloes in the sample. For each sample,
the value of AC corresponds to the sharp cutoff in the histogram shown in the
top panel of the column with A plotted along the x-axis. The different samples
converge for A≫ AC but there are differences for A≲ AC.
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Table 3.1: Values for the fits to Eq. 3.6 at z = 0.3. Top four rows are for X-ray lumi-
nosity, middle four for integrated Compton-Y and bottom for for galaxy richness.
Note that for richness we only fit a regular lognormal, so we do not the include
the power law parameters. Fits for other redshifts can be found in Appendix 3.A.

a M500c[M⊙] A µ σ log10 at α
X-ray 1013.0 M⊙ 1.888× 10−3 41.1 0.35 41.6 1.90
X-ray 1013.5 M⊙ 2.875× 10−3 42.2 0.23 42.6 3.67
X-ray 1014.0 M⊙ 4.027× 10−3 43.2 0.17 43.5 3.96
X-ray 1014.5 M⊙ 4.779× 10−3 44.0 0.14 44.9 6.50
SZ 1013.0 M⊙ 3.882× 10−3 -7.05 0.23 -6.92 2.09
SZ 1013.5 M⊙ 5.464× 10−3 -6.09 0.17 -5.98 3.27
SZ 1014.0 M⊙ 7.010× 10−3 -5.25 0.13 -5.17 4.25
SZ 1014.5 M⊙ 8.185× 10−3 -4.46 0.12 -4.31 5.04
λ 1013.0 M⊙ 2.729× 10−2 0.39 0.34 - -
λ 1013.5 M⊙ 2.391× 10−2 0.91 0.24 - -
λ 1014.0 M⊙ 3.511× 10−2 1.31 0.17 - -
λ 1014.5 M⊙ 4.534× 10−2 1.77 0.13 - -

thermal SZ signal Y5×R500c
, or galaxy richness λ. In Section 3.3.1 we show and

fit the distributions of each of the selection observables at fixed mass. We de-
scribe the general correlations between the differently selected samples for a tar-
get mass cut of MC = 1014M⊙ in Section 3.3.2. We show different percentiles
of the mass distribution as a function of AC in Section 3.3.3. We investigate the
shift across redshift for selections based on cuts number density and observables
in Sections 3.3.4 and 3.3.5, respectively. In Section 3.3.6 we investigate how the
sample bias depends on mass and redshift. We finish by investigating how the
different selections impact secondary cluster properties in Section 3.3.8.

3.3.1 Scatter at fixed mass

Before comparing samples defined by cuts in different observables, we will inves-
tigate the distribution of the observable mass proxies at fixed halo mass. Fig. 3.1
shows the scatter in X-ray luminosity (top panel), SZ Compton-Y (middle panel)
and galaxy richness (bottom panel) in four different mass bins at z = 0.3. The
mass bins are 0.1 dex wide, ±0.05 dex around the centre, and are centred on
log10M500c/M⊙ = 13.0, 13.5, 14.0, and 14.5.

The distributions shift towards larger values for higher masses. Near their
peaks, the distributions are well described by lognormal fits (dotted curves).
However, the X-ray luminosity and Compton-Y distributions have tails towards
higher values that deviate from the lognormal fits, skewing the distributions to-
wards larger values. These distributions are well fit by lognormal plus power-law
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functions (dot-dashed curves) parameterised as

Nhaloes(a) =

Aexp
(
− (log10(a)−µ)2

σ2

)
a ≤ at ,

Ba−α a > at ,
(3.6)

where,

B =
Aexp

(
− (log10 at−µ)2

σ2

)
10−α log10 at

. (3.7)

The best-fitting values of the free parameters A, µ, σ , log10 at and α, which we
obtained using least squares statistics, where each bin was weighted by 1/

√
N ,

can be found in Table 3.1, and the result for other redshifts can be found in Ap-
pendix 3.A. The general trends described below also apply to the other redshifts.

For lowermass bins the lognormal parts become narrower, the power-law tails
start closer to the peak and the slope become shallower. As a result, samples de-
fined by a cut AC will suffer from a slight increase in upscatter from low-mass
bins and this upscatter will be underestimated if the distributions are assumed
to be lognormal, which is the assumption conventionally adopted in the litera-
ture. X-ray is slightly more skewed, and Compton-Y is significantly more skewed
than what was found for the stellar and gas mass by Farahi et al. (2018). How-
ever, for Compton-Y the deviations from a lognormal depend on the size of the
aperture, which in this work we take to be 5R500c for Compton-Y as appropri-
ate for the Planck satellite. In Appendix 3.B we demonstrate that the deviations
largely disappear when using a smaller aperture of R500c, which suggests that
the deviations visible in Fig. 3.1 are due to projection of/blending with nearby
structures.

For richness we do not attempt to fit a lognormal plus power-law, since this
shape is not clearly seen in the distributions. For the highest mass bins the shape
is lognormal, and for the lower mass bins there is a tail extending towards lower
values of richness.

For all three observables we find an increase in the lognormal scatter towards
lower masses. We leave an investigation of the physical origin of the scatter in
the different observables for future work.

3.3.2 Correlations between cluster properties

To better understand how different selections will relate to the different observ-
ables, we investigate the distributions of, and correlations between the observ-
ables we select on. In Fig. 3.2 we show a corner plot of the distribution of our
selection quantities at z = 0.3. We pick an intermediate redshift, but note that
the qualitative picture is similar at z = 0 and 0.5. The panels along the diagonal
show histograms of the individual quantities. The off diagonal panels show the
95th percentiles for each combination of quantities. The light blue lines show the
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mass selected distribution for a lower limit onM500c ofMC = 1014 M⊙. Each other
colour shows the result for a different sample A > AC, i.e. a selection based on the
median value of the observable A indicated in the legend at A(M500c =MC).

The light blue contours in the first column show that all observables are
tightly correlated with halo mass for masses above the mass cutM500c = 1014 M⊙.
For M > MC the differences between the different samples are small. Below this
mass the distributions diverge. Richness shows the largest spread, and a cut of
M500c = 1014 M⊙ is still high enough for it to not suffer from small number statis-
tics.

The mass distributions for selections based on the other quantities can be seen
in the topmost diagonal panel. At the selection limit the number of objects se-
lected based on the quantity shown along the x-axis of the histogram drops to
zero. The richness selection includes the largest number of haloes below the tar-
get mass MC and starts to become incomplete, with respect to a mass selection,
at masses below ≈ 0.2 dex above MC. X-ray and Compton-Y selections are com-
parable to each other in terms of completeness at the target mass, and include
less contamination from haloes with M500c < MC than the sample selected on
richness. At this redshift, X-ray selection yields the lowest number of haloes with
mass smaller than the target mass.

3.3.3 Characteristic mass as a function of the cut in observable space

In addition to the complete distributions shown in Fig 3.2, it is interesting to look
at each of the scaling relations between observable and mass that are used for the
selection. The solid line in each panel of Fig. 3.3 shows the median M500c for a
sample defined by A > AC with AC plotted along the x-axis at z = 0.3. Different
panels show different choices for A. From top to bottom, the three panels show
X-ray, SZ and richness selection. We also show the 5th and 95th percentiles of the
sample, and for reference we indicate the median values at fixed mass, unlike the
black lines which show the mass of the full sample with A > AC, of the selection
quantities at three fixed values of MC using vertical dotted lines, with a circle to
mark the mass the line corresponds to.

In all panels, the median lines cross each vertical line at a mass that is slightly
higher than the mass that the vertical line is based on, indicated by the circle.
Since the vertical lines and circles indicate the value of A for a sample with
fixed mass MC, while the black lines show the median based on the sample with
A > A(MC), this is expected. The difference is not very large, due to the expo-
nential nature of the high-mass end of the halo mass function, every sample will
be dominated by its lowest mass haloes. There is a very slight trend where for
richness the crossing point is closest to the fixed mass MC compared with X-ray
and SZ selections. As seen in Fig, 3.2, richness starts becoming incomplete at a
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higher mass than the other selection methods, which will make the median mass
in such a sample lower.

Except for very low X-ray luminosity cuts, for all panels and all values of
AC the median is closer to the 5th percentile than to the 95th percentile, indi-
cating that the samples are skewed to lower halo masses. In Section 3.3.1 we
showed that the intrinsic scatter in A at fixed mass is largely consistent with an
un-skewed lognormal distribution, with only slight deviations at the high-end
tail. The skew we see in Fig. 3.3 is due to the nature of the selection. Because
there are more lower-mass haloes with relatively high values of A for their mass
than there are higher-mass haloes with relatively low values of A for their mass,
up scatter dominates over down scatter.

For most of the dynamic range shown in Fig. 3.3, all percentiles have a
smooth, near power-law shape, with two exceptions. First, at low X-ray lumi-
nosities there is a sudden drop in the 5th percentile, indicating a large amount
of scatter of the X-ray luminosity in haloes with massesM500c < 1013.5 M⊙. When
we do not mask particles recently heated by AGN, the drop of the percentile
moves to a higher X-ray luminosity. This suggests that for low halo masses
increases in X-ray luminosity due to feedback are important. In Appendix 3.C
we show that the drop in the 5th percentile does not disappear for a simulation
with higher resolution, and is thus not a resolution effect. From Fig. 3.1 we
know that for X-ray luminosity the importance of up-scatter increases for lower
halo masses, as the distribution at fixed mass gains a tail towards higher X-ray
luminosities. In particular, this deviation from lognormal is larger for X-ray than
for SZ. Our findings in Fig. 3.3 indicate that the X-ray deviations from lognormal
are strong enough to significantly skew the sample at masses M500c < 1013.5 M⊙.
Second, for richness there is a clear deviation from the power-law shape for
λ < 10. In addition, discreteness effects appear because a halo mass of about
1013 M⊙ is required for the richness to be larger than one. This behaviour is not
affect by the resolution of the simulation, see Appendix 3.C, but does move to
lower masses for higher resolutions.

3.3.4 Selection at fixed comoving number density

In the previous subsection we created samples by making a cut on a selection ob-
servable, and then compared the resulting sample with a mass-selected sample.
Another approach of interest is to create an ordered list based on the values of a
selection quantity and then selecting a sample based on a cut in the cumulative
comoving number density of objects. We show the cumulative comoving number
density as a function of mass, X-ray luminosity, SZ signal and galaxy richness in
the different panels of Fig. 3.4. Different colours correspond to different redshifts.
Comparing the different coloured solid lines, we see that a cut on comoving cu-
mulative number density corresponds, as redshift increases, to a sample with
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Figure 3.3: Solid lines show the median M500c for a sample selected using a cut
on the quantity plotted along the x-axis, i.e. median(M500c|A > AC), for AC given
on the x-axis, at z = 0.3. From top to bottom, the different panels show the three
different selection quantities AC: X-ray, Compton-Y and galaxy richness. The
dashed (dotted) line indicates the 5th (95th) percentile. The vertical dotted lines
show the median values of each quantity at the masses indicated in the legend,
with the corresponding mass indicated with a dot. Except for richness at λ < 10,
the median relations are smooth and have shapes close to power-laws.
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Figure 3.4: The cumulative comoving number density of all haloes as a function
of M500c (top left panel), X-ray luminosity (top right panel), SZ Compton-Y (bot-
tom left panel) and galaxy richness (bottom right panel). The different colours
correspond to different redshifts. The symbols indicate the number density and
median value of each quantity at a fixed mass, with the different symbols corre-
sponding to different masses. At higher redshifts, a cut at fixed comoving num-
ber density results in a sample with lower masses, Compton-Y and richness, but
a distribution of X-ray luminosities that is almost independent of redshift. The
dotted lines connect the markers for the samemass at different redshifts. Because
at a fixed mass the X-ray luminosity increases with redshift, the number density
above a fixed luminosity decreases less with redshift than for a mass-selected
sample. Compton-Y and richness selected samples evolve similarly to a selection
based on mass.
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lower masses, Compton-Y values and richness values, but is close to an X-ray
luminosity limited sample for number densities greater than 10−3 cMpc−3.

Except for X-ray luminosity, the number density at a fixed value of the se-
lection quantity decreases strongly with increasing redshift. For a mass-selected
sample this is expected, because the halo mass function increases with time. For
selection quantities for which the observable – mass relation does not evolve
strongly, we expect the same qualitative trend, which is indeed seen for the SZ
signal and, to a lesser extent, galaxy richness. Interestingly, for X-ray luminosity
the different redshifts fall nearly on top of each other, except at the faint end.
This implies that the evolution of the luminosity – mass relation nearly cancels
the evolution of the mass function, with luminosity at fixed mass increasing with
redshift. The very close agreement between the different redshifts must be a co-
incidence, because the number density – mass relation depends differently and
more strongly on cosmology than the observable - mass relation. Note that, as
a consequence, to create a mass-selected sample, we would need to select much
higher X-ray luminosities, slightly higher Compton-Y values, and much smaller
richness values at high redshift compared to z = 0.

It is helpful to consider the symbols connected with dotted lines, which in-
form us about the evolution of the selection quantity at fixed M500c. For the SZ
Compton-Y the dotted curves are nearly vertical, which implies that there is very
little evolution in the mass – observable relation. For SZ the curves have neg-
ative slopes, bending slightly towards lower values at higher number densities.
Because number density increases with time at fixed mass, this indicates a slight
evolution towards smaller Compton-Y at fixed mass, as expected from the E3/2(z)
scaling from self similarity (Kaiser, 1986, 1991). For X-ray luminosity the dot-
ted lines bend strongly in the same direction, implying strong evolution towards
lower luminosities at fixed mass, as expected from the E2(z) self-similar scaling.
For galaxy richness the dotted curves behave similarly to Compton-Y, but slow
slightly more evolution with redshift.

3.3.5 Sample mass bias as a function of the selection limit

The next step is to see how the sample mass bias changes with the selection limit
A > a and how it evolves with redshift. To indicate how different the sample is
from a mass-selected sample with a mass cut MC, which we will hold fixed at
1014 M⊙, we compute the sample mass bias, as defined by Eq. 3.5, where we add
one to the bias to allow for logarithmic plotting. The solid lines in Fig. 3.5 show
the sample mass bias for the median, i.e. the factor by which the median mass
of the sample with A > a, where a is plotted along the x-axis, differs from the
median mass of the sample with M500c > MC. Similarly, the dashed lines show
the sample mass bias for the 5th percentile. The different colours show different
redshifts. The three panels show selections based on X-ray luminosity (top), SZ
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signal (middle) and galaxy richness (bottom). The bias is defined with the respect
to the sample with a mass cut of MC = 1014 M⊙.

For reference, the median values of observable A at the fixed mass MC are
indicated by the dotted vertical lines, one for each redshift. The vertical lines
show strong redshift evolution of the value of the median X-ray luminosity at
mass MC, with the median luminosity increasing by over an order of magnitude
from z = 0 to z = 2. For the SZ signal the effect is much milder, there is only a
slight increase with redshift. Galaxy richness only exhibits mild evolution.

Observed clusters are distributed across a range of redshifts. If the
observable-mass relation evolves, then applying a cut at a single value of the
observable a can result in samples for which the mass distribution varies with
redshift. This then leads to different sample mass biases for different redshifts.
This effect is most pronounced for X-ray selection, as can be seen from the
large differences between the different coloured solid lines. For example, while
choosing a luminosity cut of 2 × 1043 ergs−1 yields a sample with a nearly
unbiased median mass at z = 0, while at z = 2 the median mass is biased low
by nearly an order of magnitude. Due to the strong evolution in the relation
between X-ray luminosity and mass, any value selected for the X-ray luminosity
cut will lead to a sample that becomes increasingly biased towards lower masses
at higher redshifts. On the other hand, thanks to the mild redshift evolution for
the SZ signal and galaxy richness, a cut on Compton-Y or λ will lead to a similar
mass cut across different redshifts, thus allowing for the creation of a relatively
unbiased sample. For a fixed cut in the observable, the value of the sample mass
bias decreases with redshift for X-ray luminosity and SZ signal, but tends to
increase with redshift for galaxy richness.

Examining the 5th percentiles, we see that they yield lower sample mass bias
factors than for the medians (i.e. the dashed lines are below the solid lines of
the same colour), indicating the sample is skewed towards lower masses. For
cuts resulting in an unbiased median (i.e. samples with A > a where the value a
corresponds to the intersect of the vertical coloured dotted line and the horizontal
black dotted line indicating bM500c

= 1), the 5th percentile is biased low (i.e. the
dashed line of the corresponding colour gives a bias value lower than unity).
This means that the 5th percentile of the mass distribution of the sample with
A > a, where a is chosen such that the median mass is the same as for a sample
with M > MC, is smaller than the 5th percentile of this mass-selected sample.
This bias tends to increase with redshift and becomes particularly large for X-ray
selection at z = 2.

Below a certain X-ray luminosity, the bias factor for the 5th percentile de-
creases rapidly to values bM500c

≪ 10−1. This suggests that for low halo masses,
there is a large amount of scatter in the X-ray luminosity. This behaviour is simi-
lar to that for X-ray selection shown in Fig. 3.3. The sudden drop in the bias shifts
to higher luminosities at higher redshifts. There are no similar drops in the bias
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factor for SZ or richness selection.

3.3.6 Sample mass bias as a function of the target mass limit

Next we will investigate the bias in the median and 5th percentileM500c for sam-
ples created with different observables as a function of the target mass MC. To
calculate the bias we use a cut based on the median of observable a at a fixed
mass MC (Eq. 3.4), which we denote as AC. We then calculate the sample mass
bias bM500c

for a range ofMC using Eq. 3.5. Since we useMC to define the cut AC,
the sample mass bias becomes a function of only the target mass. This is shown
for different observables in Fig. 3.6. From top to bottom, the mass cut is informed
by a X-ray, SZ or richness selection limit. Each panel uses four distinct colours to
represent various redshifts. The solid and dashed lines, respectively, depict the
bias in the median and 5th percentile.

We first discuss some of the apparently odd features in each of the panels.
Similar to what is shown in Figs. 3.3 and 3.5, there is a drop in the 5th percentile
for the X-ray selection at low masses. The mass at which this happens increases
with redshift and is 2 × 1013 M⊙ at z = 0, increasing by a factor five at z = 1.
Additionally, both biases exhibit a drop-off at the highest masses. This is caused
by the fact that there are only very few halos for those mass bins. In that case even
a few lower mass haloes that have a relatively high X-ray luminosity can quickly
contaminate the sample and lead to a large bias.

At low masses, slightly aboveM500c = 1013 M⊙, the richness selection demon-
strates a sawtooth-like behaviour. This behaviour is directly linked to the dis-
creteness issues inherent in our definition of richness. Every discrete value for
the richness will have a range of halo masses for which it is the median at fixed
mass. For this range of mass the richness selected sample will not change, and all
the change is due to the mass selection. For each value of the richness there is a
mass cut value that maximises the bias, and moving away from this value will al-
ways lead to an increasing bias. The decrease is turned around when the richness
cut goes to the next discrete value, and then it will suddenly start to increase.
This inherently leads to the lines going up and down with sudden changes in
slope, which is seen in the figure as a saw tooth.

Now we will discuss the behaviour of the bias for each of the selections, start-
ing with X-ray. At all redshifts the bias in the median mass for X-ray selection
has a similar shape. Around ∼ 1014 M⊙, the median bias is closest to zero, in-
dicating a relatively unbiased selection, and it remains mostly flat around that
mass range. Towards the highest masses, the bias has a sudden drop. The bias
also slowly moves away from one towards lower masses. For z = 1,0.5 and 0, the
bias is close to -0.1 at the maximum, and only at z = 2 does the best possible bias
decrease to just below -0.2. The 5th percentile exhibits more extreme evolution,
with the plateau of roughly constant bias diminishing with increasing mass. At
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Figure 3.5: Each panel shows the bias factor forM500c (Eq. 3.5) of a different sam-
ple relative to a mass-selected sample with a mass cut of MC = 1014 M⊙. We add
one to the sample mass bias to allow for logarithmic plotting. The panels show
samples selected to have A > a, and thus contain all halos above the given thresh-
old a, where A is X-ray luminosity (top panel), SZ Compton-Y (middle panel), or
galaxy richness (bottom panel), and a is the value plotted along the x-axis. Solid
and dashed lines show the bias for the median and the 5th percentile of the dis-
tribution, respectively. The different colours show the results for four different
redshifts. The dotted vertical lines show the median value of each quantity at
the mass MC. For an unbiased sample both the solid and dashed curves would
intersect the vertical dotted line at the y-axis value of unity.
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z = 2, the 5th percentile is consistently biased by a factor of ten or more. In X-ray
luminosity-based selections, optimal results are thus achieved by choosing a cut
that maintains the median halo mass above ∼ 1014 M⊙. This not only minimises
bias but also prevents significant skewness in the distribution, especially at the
5th percentile.

The SZ selection consistently yields a median bias close to zero for the me-
dian across all masses and redshifts. The median bias increases slightly towards
∼ 1013M⊙ but stays above -0.2 for all redshifts. This is in agreement with the
results from Fig. 3.5. The SZ selection has little evolution with mass, and con-
sistently provides relatively unbiased results (−0.1 < b < 0) for all redshifts. Sig-
nificant evolution is observed for the 5th percentile, becoming more biased with
increasing redshift. The bias in the 5th percentile shifts from −0.25 at z = 0 to ap-
proximately −0.5 at z = 1 and 2. The 5th percentiles become increasingly biased
when the mass cut falls below ∼ 2×1013 M⊙. These results are for our fiducial SZ
aperture of 5R500c. In Appendix 3.B we investigate the bias for a smaller aperture
of R500c. Using the smaller aperture the biases reduce further, leading to a nearly
unbiased median over the entire mass range, and the bias in the 5th percentile
reduces to only ∼ 5 per cent. An aperture of R500c thus leads to smaller biases for
SZ selection.

With the exception of massesM500c ∼ 1013 M⊙ and at z = 2, richness selection
leads to a median bias close to -0.1 that decreases slightly up to z = 2. At the
lowest masses richness exhibits a slight sawtooth behaviour due to discreteness
effects, but the bias does not drop significantly. At z = 2 the bias drops slightly
more, reaching a value of slightly less than -0.2. The most interesting behaviour
is found in the bias of the 5th percentile. Over the entire mass range, the bias in
the 5h percentile increases with mass, going from -0.6 for M500c = 1013 M⊙, to
around -0.2 forM500c = 1015 M⊙. The 5th percentile also becomes more biased at
z = 2.

For masses below 1014 M⊙ as well as at z ≥ 1, using an SZ selection yields the
least biased results for both the median and the 5th percentile. In those regimes,
the X-ray selection exhibits a substantial influx of smaller haloes ’up-scattering’
into the sample, resulting in a stronger bias. For richness the median sample
mass bias is similar to the SZ selection, but there is a much larger skew in the
5th percentile. When we examine selections above ∼ 1014 M⊙ at z = 0 and 0.5
the three selections exhibit closer bias values, and there is no longer a clear ’best’
choice. Regarding the bias on the median, the only outlier occurs for masses close
to and larger than 1015 M⊙ in the case of an X-ray selection. In this scenario, both
the median and the 5th percentile exhibit significant bias, and opting for either
an SZ or richness selection yields better results.



3

3.3. Results 129

1013 1014 1015

Target mass cut M500c [M ]

1.0

0.8

0.6

0.4

0.2

0.0

b M
50

0c

X-ray selection

1013 1014 1015

Target mass cut M500c [M ]

1.0

0.8

0.6

0.4

0.2

0.0

b M
50

0c

SZ selection

Median
5th Percentile

1013 1014 1015

Target mass cut M500c [M ]

1.0

0.8

0.6

0.4

0.2

0.0

b M
50

0c

Richness selection

z = 0
z = 0.5
z = 1.0
z = 2.0

Figure 3.6: The sample M500c bias (Eq. 3.5) as a function of the target mass cut.
The cut used for X-ray luminosity (top panel), Compton-Y (middle panel) and
galaxy richness (bottom panel) is the median value for the mass cut plotted along
the x-axis (see Eq. 3.4). The solid and dashed lines shows the sample mass bias for
the median and 5th percentile, respectively. The different line colours show the
results at different redshifts. The bias in the median mass increases towards low
target masses and, for X-ray selection also towards high masses. While there are
target masses for which the median mass is only slightly biased low, the 5th per-
centiles of the mass distribution are always much lower than for a mass-selected
sample. The biases tend to increase with redshift.
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Figure 3.7: Same as Fig. 3.6 for a single redshift, z = 0.3, but for different
FLAMINGO models (different colours). In the left column the selection is based
on the median of observable a in each simulation at the target mass cut plotted
along the horizontal axis. Differences between models are thus due to the dif-
ferences in the scatter in the observable-mass relations. For all models shown
in the right column the selection is based on the median relation of observable
a in the L1_m9 simulation. Differences are therefore due to both changes in the
scatter and changes in the median of the observable-mass relations. The labels
“fgas” indicate runs with a change in the gas fractions, where a lower number of
sigma indicates a lower gas fraction and thus stronger feedback. The M* label
indicates runs for which the stellar mass function is shifted to lower masses. The
label “Jet” indicates that the AGN feedback model uses kinetic jets instead of the
thermally driven winds used for the other runs. Note that the top two rows both
show results for X-ray selection, but for different sets of simulations. The results
for X-ray selection are distributed over two panels for visual clarity. Only X-ray
selection and, to a lesser extent, richness selection are sensitive to changes in the
gas fraction or the stellar mass function.

3.3.7 The effect of modelling uncertainty

One potential reason for concern is that our conclusions might be influenced by
the properties of clusters realised in the simulation and that these properties
may not be modelled with sufficient accuracy. To examine the effect of vary-
ing the cluster properties, Fig. 3.7 shows the sample mass bias as a function of
the target mass cut at z = 0.3 for all the FLAMINGO feedback variations. As
shown by (Schaye et al., 2023; Braspenning et al., 2023), the cosmology variation
have no significant impact on the scaling relations, and are therefore not con-
sidered in this work. These variations consist of models that vary the hot gas
content and/or the stellar mass function, by changing the strengths of stellar and
AGN feedback, or that use jet-like instead of thermal AGN feedback. In the left
column, the X-ray luminosity, Compton-Y, and richness cuts correspond to the
median value of the observable as a function of the target mass cut. For each
model variation the cut therefore corresponds to the same target mass cut. In the
right column we instead fix the X-ray, SZ and richness cuts to those obtained for
the fiducial L1_m9 simulation for the target mass cut. This translates to setting
AC(M500c) = AC,L1_m9(M500c) for each variation, i.e. we assume a slightly wrong
observable-mass scaling relation for the model variations. Therefore, the left col-
umn shows the effect of changes in the scatter in the observable-mass relation
between the different models and the right columns shows the combined effect
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of changing the scatter and ignoring the effect of the change in model on the
median observable-mass relation.

Starting with the left column, which shows the effect of changing the scatter
in the observable-mass relation, the results are similar for all model variations.
Except for the 5th percentile of X-ray selected clusters for low target masses, the
bias is generally insensitive to variations in the model. For X-ray there is a slight
trend where a lower gas fraction (i.e. fgas−Nσ ) is associated with a slightly more
biased median mass, but the effect is small. The shapes of the curves are different
for the fgas+2σ and Jet models, particularly for the bias on the 5th percentile. For
SZ- and richness-selected samples the bias factors are insensitive to the model.

In the right column, which shows the combined effect of the model varia-
tion on the scatter and the mass-observable relation, we find larger though still
small model-dependence for the sample mass bias in SZ-selected samples. The
variations change the bias by ∆bM500c

≈ 0.05 − 0.1 and the general shape of the
dependence on the target mass does not change. For richness-selection, we find
a slight trend with gas fraction, and a deviation of about 0.1 in bias for the mod-
els with a stellar mass function shifted to lower stellar masses. The dependence
on stellar mass is expected, as we apply a stellar mass cut for our definition or
richness. In contrast with SZ, the differences between feedback variations are
larger for higher mass objects. For X-ray selection, changing the simulation with-
out changing the selection limit to account for the change in the mass-observable
relation has a large impact. The bias on the median mass changes from ≈ 0.5 to
≈ −0.5 going from the lowest to highest fgas variation. This implies that hav-
ing complete knowledge of the true scaling relation is essential. Any deviations
between the true scaling relation and the one that is assumed when modelling
selections effects will lead to a biased sample.

The fact that X-ray selection is most affected by variations in the model is to be
expected. From Braspenning et al. (2023) we know that the different variations
have different electron densities in the cluster cores. The X-ray luminosity scales
as ρ2 and is therefore more sensitive to feedback processes affecting the core than
Compton-Y, which scales as ρ. From Fig. 7 of Kugel et al. (2023) or Fig. 10 of
Schaye et al. (2023) we can see that the gas fractions of all models start to converge
for high masses, just as the sample mass bias start to converge for high masses
in the top right panel of Figure 3.7, though substantial differences remain even
at the highest masses. It is also clear that the behaviour is not fully determined
by the gas fraction, as the bias for the jet and the M* variations do not agree
with their corresponding fgas variations. This further emphasises the fact that
direct knowledge of the observable-mass scaling relations is important, and that
we cannot rely solely on indirect measurements.
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Figure 3.8: Distribution of relaxedness (top left; Eq. 3.8), X-ray concentration
(top right; Eq. 3.9), mass-weighted mean temperature (middle left), gas fraction
(middle right), relative deviation from the median mass-weighted mean temper-
ature at fixed mass (bottom left) and relative deviation from the median fgas,500c
at fixed mass (bottom right) for selections with a target mass of MC = 1014 M⊙ at
z = 0.3. The different line styles indicate selections based on different properties.
The median of each sample is indicated with a vertical line at the top of each
panel. The 5th and 95th percentiles are shown using red circles. Selection effects
result in biased distributions of cluster properties relative to amass-selected sam-
ple. This is mostly due to upscatter from lower masses, but the bottom row shows
that there are biases even at fixed true mass.
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3.3.8 Biases in properties other than mass

So far we have looked at how different selections bias the mass distribution of the
cluster samples. When looking beyond the effects on cluster count cosmology,
we want to inspect what the impact of different selections is on other properties
of clusters. Even if the mass is measured independently, the lower mass objects
that up-scatter into the selection could give a biased view of how scaling relations
extrapolate towards lower masses.

There are a few cluster properties that are of particular interest. Lovisari et al.
(2017), Rossetti et al. (2017) and Andrade-Santos et al. (2017) report differences
in the disturbed fraction and the cool core fraction when comparing X-ray- and
SZ-selected samples. Besides the disturbed fraction and cool core fraction, we
also investigate biases in the median temperature and gas fraction.

To quantify the degree of disturbedness in FLAMINGO, we compute the re-
laxedness parameter, defined as

Relaxedness =
|xCOM − xCOP|

R200c
, (3.8)

where xCOM is the position of the center of mass of the halo, defined by all the
particles bound to the subhalo, xCOP is the location of the most bound particle in
the halo, and R200c is the radius within which the average density is equal to two
hundred times the critical density. Note that a higher relaxedness value indicates
a cluster that is more disturbed.

In order to trace whether a cluster is cool-core, we use the X-ray concentration,
defined as

X-ray concentration =
LX,r<0.15R500c

LX,r<R500c

, (3.9)

where LX,r<0.15R500c
is the X-ray luminosity in the core of the halo, defined by

0.15R500c and LX,r<R500
is the total X-ray luminosity within R500c. The higher the

X-ray luminosity concentration, the more likely a cluster is to have a cool core.
We also measure the mass-weighted mean temperature, excluding gas below

105 K, and the gas mass fraction, each within R500c. Additionally, since both
the temperature and the gas fraction have a strong dependence on halo mass, we
measure their deviations from the median at a fixed mass,

∆X =
X −median(X(M500c))
median(X(M500c))

. (3.10)

This way we can investigate whether the lower mass haloes that up-scatter have
different values for the temperature and gas fraction than amass-selected sample.

To investigate how the different selections bias these quantities, we create a
sample using a target mass MC = 1014 M⊙ for each observable a, as well as a
mass-selected sample. In Figure 3.8 we show the distributions of these quantities
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at z = 0.3. On the y-axis we show the bin-size normalised number density. The
different line styles indicate the different selection methods used. The mass se-
lection (black solid curve) should be taken as the baseline to compare the other
selections with. We show the median of each selection with a vertical line at the
top of the plot, and the 5th and 95th percentiles using red circles.

The top left panel shows the distribution of relaxedness, the offset between
the center of potential and center of mass. We do not find strong differences
between the different selection methods, the medians and percentiles are similar,
and close to those of the mass selected sample. For the most disturbed objects,
with the highest value of the offset, there is a slight trend where an SZ selection
yield more highly disturbed objects, but this trend is very slight.

In the top right panel we show the distribution of X-ray concentrations.
Andrade-Santos et al. (2017) used a similar metric to divide clusters into
cool-core and non-cool-core clusters. A higher value indicates a more centrally
concentrated X-ray luminosity, implying that the cluster is more likely to be a
cool-core cluster. Richness selection does not lead to a clear preference between
more or less cool-core objects. For X-ray and SZ we find results qualitatively
similar to those of Andrade-Santos et al. (2017). There is both an enhancement
in the number of clusters with high X-ray concentration for the X-ray selection,
and an enhancement of object with low X-ray concentration for SZ selection.
However, as can been seen in the medians and percentiles, this difference is quite
small.

Themiddle two panels of Figure 3.8 show the distributions of the temperature
and gas fraction. For both these quantities, the differences relative to mass selec-
tion stem mainly from the fact that up-scattered haloes have lower halo masses,
which implies that selections with more up-scattered haloes contain more objects
with a low temperature and a low gas fraction. The most massive haloes, which
have the highest temperatures and gas fractions, are included in each selection.
This is reflected in the medians and 95th percentile, which do not change signif-
icantly, with the exception of the median gas fraction for richness selection. All
selections are therefore complete for high temperatures and gas fractions. The
samples selected on observables other than mass include more objects that have
relatively low temperatures and gas fractions. For the temperature, the distribu-
tion of these objects is similar to what is found in Figure 3.2, indicating that the
differences are largely mass-driven. These panels show that many of the lower-
mass haloes that up-scatter into each selection have a significantly lower temper-
ature and gas fraction than the haloes in a mass-selected sample. However, they
do not tell us whether the haloes that are now included are different from other
haloes of the same mass. This is investigated in the bottom two panels.

The bottom left panel of Figure 3.8 shows the relative deviation from the me-
dian temperature at the true halo mass for the different selections (see Eq. 3.10).
By plotting this relative difference we can investigate how the temperatures are
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biased with respect to the median at their given mass. In this case the X-ray selec-
tion does not bias the sample substantially, but for the SZ and richness selections
there is a pronounced tail towards haloes with much higher temperatures. This
slightly increases the 95th percentile, but does not change the median signifi-
cantly.

The bottom right panel of Figure 3.8 shows the deviation from the median
gas fraction within R500c at fixed halo mass for the different selections. Richness
selection increases the scatter, but there is no clear preference for higher or lower
gas fractions as the median does not change. For both X-ray and SZ selections
there is a preference for objects with a gas fraction that is high for their mass,
though themedian gas fractions are nearly the same. X-ray selection finds slightly
fewer haloes with a relatively low gas fraction than mass selection. This implies
that even for haloes of a fixed mass, X-ray selection will already lead to a slight
bias towards higher gas fractions. For both SZ and X-ray selection the clusters in
the sample tend to have gas fractions that are higher than the average population,
even at a fixed mass. For the X-ray sample, the 95th percentile increases by about
∼ 20% and higher percentiles are biased more strongly. This bias will be stronger
closer to the survey selection limit, i.e. for lower masses. This is consistent with
the findings by Kugel et al. (2023), who attributed the fact that the observed
relation between X-ray gas fraction and mass flattens off below 7 × 1013 M⊙ to
selection effects.

For three of the four quantities investigated, i.e. X-ray concentration, temper-
ature, and gas fraction, we find that selecting on an observable other than mass
introduces slight biases compared to a mass-selected sample. For clusters with
masses larger than themedian of the sample these effects will be negligible. How-
ever, upscatter results in the addition of lower mass haloes with temperatures
and gas fractions that are lower than for a mass-selected sample. For richness
selection this upscatter results in significant negative biases for the median gas
fraction, while the bias in the medians is negligible for other selections. Even for
the 5th percentiles the biases are small, with the exception of richness selection.
Comparing the temperatures and gas fractions to the median values for the true
mass of each selected halo, we find again that the medians are nearly unbiased,
but there is a tail towards higher temperatures and gas fractions. For richness se-
lection the up-scattered haloes also have a tail towards lower gas fractions relative
to that expected for their true mass. However, for the 5th and 95th percentiles
the biases are still small. As all our selections are intrinsically volume-limited,
we find results similar to Chon & Böhringer (2017), and we note that observed
differences between differently selected samples may be more influenced by the
difference between volume- and flux-limited surveys than the selection method.

While these results cannot explain the relatively large sample mass biases
that we found in earlier sections, they do show that some of the biases in cluster
properties other than mass are intrinsically correlated with the chosen selection
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method.

3.4 Conclusions

Given their large volumes and good agreement with observation, as well as the
availability of a large number of model variations, the FLAMINGO simulations
(Schaye et al., 2023; Kugel et al., 2023) provide an opportunity to investigate how
different galaxy cluster selection methods influence the resulting samples. This
is crucial for cluster cosmology (e.g. Allen et al., 2011; Mantz, 2019), but also for
understanding the role of selection biases in cluster scaling relations.

We used the FLAMINGO simulations to investigate how the samples obtained
from cuts in X-ray luminosity, thermal SZ Compton-Y (integrated within an aper-
ture of 5R500c), or galaxy richness (using satellite galaxies with stellar mass >
1010.046M⊙) are biased in terms of the median and other percentiles of the mass
distribution and certain secondary quantities. We summarise our findings as fol-
lows:

• The scatter in X-ray luminosity, Compton-Y and richness increases with de-
creasing halo mass (see Fig. 3.1). At fixed mass only the central parts of
the distributions are lognormal. The distributions of X-ray luminosity and
Compton-Y have power-law tails towards higher values, while for richness
there can also be a tail towards lower values. The tails in the distributions
cause the number of haloes that up-scatter into an X-ray or SZ selected sam-
ple to be underestimated when assuming lognormal scatter.

• In Fig. 3.2 we compared the distributions of halo mass, X-ray luminosity,
Compton-Y and richness for a target mass cut ofM500c = 1014 M⊙ at z = 0.3
for samples selected by mass or by A > AC where AC = median(A(M500c =
1014 M⊙)) and A is the observable. We found tight correlations between all
quantities for A > AC, but not for lower values. Selecting based on richness
leads to the largest amount of contamination by low-mass haloes, while X-
ray selection yields the least amount of contamination.

• As shown in Fig. 3.3, increasing the selection limit in terms of X-ray lumi-
nosity, Compton-Y or richness leads to a sample with a smoothly increasing
median and 95th percentile mass. However, for an X-ray luminosity cut
smaller than 1043 ergs−1, the 5th percentile of the mass distribution dips
to very low masses. This effect is converged with the numerical resolution
(see Fig. 3.11) and is qualitatively robust to changes in the subgrid feedback
modelling (see Fig. 3.7).

• The comoving number density above a fixed X-ray luminosity (richness) de-
creases less (more) with increasing redshift than for amass-selected sample.
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A Compton-Y or richness selected sample evolves similarly to a selection
based on mass (see Fig. 3.4).

• For a fixed target mass cut of M500c = 1014 M⊙, the corresponding X-ray
luminosity cut increases by more than an order of magnitude from z = 0 to
2, while the richness cut decreases by about a factor of 3. For Compton-Y
and richness the cut remains nearly constant with redshift (see Fig. 3.5).

• The bias in the median mass becomes stronger towards lower target masses
and, for X-ray selection, also towards high masses. While there are tar-
get masses for which the median mass is only biased slightly low, the 5th
percentiles of the mass distribution are always much lower than for a mass-
selected sample. The samples tend to become more biased with increasing
redshift. The target mass range for which the median sample mass bias is
small is largest for SZ selection (see Fig. 3.6). When using a R500c aperture
instead of our fiducial 5R500c aperture, the SZ selection becomes even less
biased (Appendix 3.B).

• Except for the 5th percentile of X-ray selected samples, and provided the
median observable-mass relation is known, the bias factors are nearly the
same for models calibrated to yield different gas fractions or stellar masses,
and also for models using a different implementation of AGN feedback
(Fig. 3.7).

• The different selections lead to slight biases in cluster properties other than
mass. In Figure 3.8 we demonstrated this for a target massM500c = 1014 M⊙.
For X-ray selection, the lower mass objects that up-scatter into the sample
have a very slight preference to have high X-ray concentrations, which is
indicative of a cool core, while the opposite is true for selection based on
richness. SZ selection includes slightly more clusters that are disturbed.
Due to up-scatter of lower-mass haloes, all selections result in the inclusion
of objects with temperatures and gas fractions that are much lower than are
present in the mass-selected sample. However, compared with the median
values for their true mass, the up-scattered objects tend to have high tem-
peratures and gas fractions. Most of these effects are minor, leading to only
small changes in the median and the 5th and 95th percentiles.

For each of the three selection methods, there are regimes in which the sam-
ples obtained have a small median sample mass bias. However, the 5th percentile
of the mass distribution is nearly always biased significantly low and the biases
tend to increase with redshift. Overall, SZ selection gives results that are closest
to mass selection.

Overall, our results highlight how important it is that the scaling relations
between mass and its observational proxies, including the scatter, are measured
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and modelled accurately. Even slight biases in the mass distributions can lead
to differences that are problematic for surveys aimed at measuring cosmological
parameters using cluster counts. We aim to investigate the direct effect of these
biases on clusters counts in future work.

We have shown that the objects with the lowest masses in each sample are
more likely to be outliers with respect to the overall population when it comes
to cluster properties other than the mass proxies. This can lead to biases when
observationally determining scaling relations for quantities like the temperature
and gas fractions.

In this work we have investigated selections based on observables in theory-
space. We have ignored observational measurement errors, lightcone effects, pro-
jection effects, fore- and backgrounds, the effects of changing the cosmology, and
other systematic effects, many of which will be survey specific. We have also
implicitly assumed that observationally selection depends solely on the proxies
investigated here, whereas in reality the signal-to-noise of a detection will de-
pend on other properties. For example, X-ray selection likely depends not just on
luminosity, but also on surface brightness (see e.g. Andreon et al., 2024). Galaxy
richness does not rely on stellar mass selection, but depends on the luminosity
and colour of the galaxies, as well as their distribution in phase space. It will be
important to include such effects in future work, e.g. by forward modelling ob-
servational selection based on virtual observations created using the FLAMINGO
lightcones.
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Appendix

3.A Fits at different redshifts

Tables 3.2 - 3.5 contain the fits similar to those in Section 3.3.1 at the four other
redshifts considered in this work. For each redshift, the general trends are similar
to those found at z = 0.3. We note that the fits for richness should be considered
with care as they are not converged with the simulation resolution and, for most
redshifts, the mass binsM500c > 1014.0 M⊙ have a mean richness that is above ten.
As the mean richness is very close to 10 for the 1013.5 M⊙ mass bin, going to that
mass or lower will likely lead to results that suffer from small-number statistics.
We omit the highest mass bin at z = 2 as there are not enough high mass halos in
the simulation volume to characterize the distribution.

Table 3.2: Values for the fits to Eq. 3.6 at z = 0. The top four rows are for selection
based on X-ray luminosity, the middle four for integrated Compton-Y, and the
bottom for for galaxy richness. Note that for richness we only fit a lognormal, so
we do not the include the parameters for the power-law tail.

a M500c[M⊙] A µ σ log10 at α
X-ray 1013.0 M⊙ 1.810× 10−3 40.8 0.37 41.5 2.06
X-ray 1013.5 M⊙ 2.675× 10−3 42.0 0.24 42.2 3.57
X-ray 1014.0 M⊙ 3.487× 10−3 42.9 0.19 43.2 4.23
X-ray 1014.5 M⊙ 4.481× 10−3 43.8 0.15 43.9 6.11
SZ 1013.0 M⊙ 3.737× 10−3 -7.18 0.24 -7.03 2.14
SZ 1013.5 M⊙ 5.608× 10−3 -6.15 0.17 -6.05 3.47
SZ 1014.0 M⊙ 7.220× 10−3 -5.29 0.13 -5.21 4.45
SZ 1014.5 M⊙ 8.317× 10−3 -4.48 0.11 -4.40 5.38
λ 1013.0 M⊙ 3.213× 10−2 0.30 0.33 - -
λ 1013.5 M⊙ 2.050× 10−2 0.81 0.30 - -
λ 1014.0 M⊙ 3.347× 10−2 1.24 0.18 - -
λ 1014.5 M⊙ 4.317× 10−2 1.70 0.14 - -
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Table 3.3: As Table 3.2, but for z = 0.5.

a M500c[M⊙] A µ σ log10 at α
X-ray 1013.0 M⊙ 1.923× 10−3 41.3 -0.33 41.7 1.91
X-ray 1013.5 M⊙ 2.977× 10−3 42.4 -0.22 42.8 3.11
X-ray 1014.0 M⊙ 4.380× 10−3 43.3 0.15 43.6 2.45
X-ray 1014.5 M⊙ 4.395× 10−3 44.1 -0.16 44.9 6.50
SZ 1013.0 M⊙ 4.019× 10−3 -6.98 0.22 -6.86 2.12
SZ 1013.5 M⊙ 5.475× 10−3 -6.05 0.17 -5.94 3.26
SZ 1014.0 M⊙ 6.976× 10−3 -5.23 0.13 -5.14 4.20
SZ 1014.5 M⊙ 7.975× 10−3 -4.44 0.13 -4.26 5.07
λ 1013.0 M⊙ 2.506× 10−2 0.44 -0.34 - -
λ 1013.5 M⊙ 2.540× 10−2 0.95 0.23 - -
λ 1014.0 M⊙ 3.588× 10−2 1.34 0.17 - -
λ 1014.5 M⊙ 4.709× 10−2 1.79 0.13 - -

Table 3.4: As Table 3.2, but for z = 1.

a M500c[M⊙] A µ σ log10 at α
X-ray 1013.0 M⊙ 2.036× 10−3 41.8 0.30 42.0 1.99
X-ray 1013.5 M⊙ 3.218× 10−3 42.8 0.20 43.1 2.80
X-ray 1014.0 M⊙ 4.727× 10−3 43.7 0.14 43.9 3.39
X-ray 1014.5 M⊙ 4.923× 10−3 44.4 0.14 44.9 6.50
SZ 1013.0 M⊙ 4.428× 10−3 -6.86 0.20 -6.75 2.38
SZ 1013.5 M⊙ 5.701× 10−3 -5.99 0.16 -5.88 3.44
SZ 1014.0 M⊙ 7.126× 10−3 -5.19 0.13 -5.10 4.49
SZ 1014.5 M⊙ 8.161× 10−3 -4.41 0.12 -4.32 6.12
λ 1013.0 M⊙ 2.324× 10−2 0.52 -0.33 - -
λ 1013.5 M⊙ 2.814× 10−2 0.99 0.21 - -
λ 1014.0 M⊙ 3.922× 10−2 1.36 0.15 - -
λ 1014.5 M⊙ 4.695× 10−2 1.80 0.13 - -
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Table 3.5: As Table 3.2, but for z = 2. Note that different from the other tables, we
do not include the highest mass bin as there are insufficient halos to characterize
the distributions at z = 2

a M500c[M⊙] A µ σ log10 at α
X-ray 1013.0 M⊙ 2.217× 10−3 42.5 -0.27 42.7 2.00
X-ray 1013.5 M⊙ 3.330× 10−3 43.4 0.19 43.7 2.82
X-ray 1014.0 M⊙ 4.190× 10−3 44.3 0.16 44.5 4.45
SZ 1013.0 M⊙ 4.923× 10−3 -6.76 0.19 -6.62 3.11
SZ 1013.5 M⊙ 6.225× 10−3 -5.93 0.16 -5.80 4.39
SZ 1014.0 M⊙ 8.234× 10−3 -5.14 0.13 -5.04 6.94
λ 1013.0 M⊙ 2.557× 10−2 0.54 -0.29 - -
λ 1013.5 M⊙ 3.074× 10−2 0.97 0.19 - -
λ 1014.0 M⊙ 4.414× 10−2 1.33 0.14 - -

3.B Using Compton-Y within R500c

For Compton-Ywe use a fiducial aperture of 5R500c, which is motivated by Planck
Collaboration et al. (2016b), but is much larger than the apertures of R500c that
we use for X-ray luminosity. In this section we investigate how the results for
Compton-Y change if we use the same aperture as for the other observables.
Fig. 3.9 shows the distribution of Compton-Y using a R500c aperture, akin to
Fig. 3.1. The different colours indicate different 0.1 dex wide mass bins. The
dotted lines show the results of fitting a lognormal distribution to each mass bin.
The values of the fitted distribution can be found in Table 3.6. Compared to the
results for the 5R500c aperture, the distributions now longer show a prominent
power-law tail towards higher values of Y500c. Furthermore, the distributions no
longer overlap. Hence, the number of lower mass haloes that upscatter will be
reduced.

In Fig. 3.10 we show the sample mass bias at four redshifts indicated with dif-
ferent colours for a sample selected on Compton-Y within R500c, akin to Fig. 3.6.
As expected from the previous figure, the smaller aperture leads to a a nearly
mass-selected sample and the sample mass bias is close to zero for all target
masses. Only the 5th percentile shows a slight (≈ 5 per cent) bias.

3.C Convergence with numerical resolution and
simulation box size

In Fig. 3.11 we show the median (solid), 5th percentile (dashed) and 95th per-
centile (dotted) of M500c obtained for samples based on different selection cuts
for the three different FLAMINGO resolutions, in a (1 Gpc)3 box at z = 0.3. Addi-
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Table 3.6: Values for the fitting the functional form f (x) = Aexp
[
− (log10 µ−x)

2

σ2

]
to the distribution of Compton-Y within R500c for objects in a 0.1 dex width bin
around the mass given in the first column. The second column gives the ampli-
tude of the distribution, the third column the mean and the fourth column the
scatter.

Mass M500c [M⊙] Amplitude log10µ σ
1013 4.79× 10−3 -7.79 2.12× 10−1
1013.5 6.86× 10−3 -6.59 1.50× 10−1
1014 9.95× 10−3 -5.60 1.05× 10−1
1014.5 1.10× 10−2 -4.73 9.52× 10−2

10 8 10 7 10 6 10 5 10 4

YR500c

10 6

10 5

10 4

10 3
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10 1
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F
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M500c = 1014.5 M

Figure 3.9: As the middle panel of Fig. 3.1, but for an aperture of R500c instead
of 5R500c. The shape of the distribution is very close to lognormal for every mass
bin.
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Figure 3.10: As the middle panel of Fig. 3.6, but for an aperture of R500c instead
of 5R500c. The sample mass bias is close to zero across all masses and redshifts.

tionally, we show the results for the (2.8 Gpc)3 box at intermediate resolution, see
Schaye et al. (2023) for the naming convention. Comparing L1_m9 and L2p8_m9
we find converged results for all but the largest halo masses, for which the sam-
pling is much better in L2p8_m9. The only box size effect is due to the improved
statistics in a larger volume. For the SZ selection (middle panel) all percentiles
are converged for all resolutions.

For the X-ray luminosity selection (top panel) the median and 95th percentile
are very close to being converged, with only the lowest resolution (m10) run de-
creasing slightly at the lowest masses. The largest difference is found for the
5th percentile. While the dip remains at roughly the same mass across the three
resolutions, the 5th percentile drops more towards with higher resolution. This
implies that the existence of the dip is not directly due to resolution effects, and
could be caused due to an increase in scatter for haloes with this luminosity. The
fact that the dip gets deeper with increasing resolution implies that at m9 res-
olution we do not yet resolve the full range of haloes that can up-scatter in our
selection for the lowest luminosities. For our fiducial resolution (m9) the median
is converged over the full target mass range and the 5th percentile is converged
for target mass cuts of M500c ≳ 1014M⊙.

For the richness selection wemake use of both a cut in stellar mass and radius.
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As the stellar mass - halo mass relation is not converged at the high-mass end, see
Fig. 9 from Schaye et al. (2023), it is not surprising that richness is not converged
either. If we make a cut using the bound subhalo mass of the satellites instead of
stellar mass, and pick a subhalo mass limit of 2 × 1011 M⊙, which selects haloes
close to the stellar mass limit of 1010.046 M⊙, then the m9 and m8 simulations do
agree, as shown in Fig. 3.12. The subhalo mass cut is too low for the low resolu-
tion (m10) simulation to be converged, but the other two resolution simulations
are converged if we select on subhalo richness. As the subhaloes are converged
between m9 and m8, the differences we see for galaxy richness in the bottom
panel of Figure 3.11 are caused by the differences in the stellar mass - halo mass
relation. Both simulations match the stellar mass function up to M∗ = 1011.5M⊙,
so the fact that the richness selection is not fully converged is due to a combina-
tion of differences in the satellite fractions and imperfect calibration of the galaxy
stellar mass function.
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Figure 3.11: The solid lines show the median M500c for a sample selected using
the cut on the quantity plotted along the x-axis. The different panels show the
three different selection quantities, X-ray luminosity (top), thermal SZ Compton-
Y (middle) and galaxy richness (bottom). The different colours show the results
for the three different FLAMINGO resolutions and for the 1 and 2.8 (Gpc)3 m9
boxes. The dashed (dotted) line indicates the 5th (95th) percentile mass for the
sample after the cut. The mass distributions are converged with resolution for
X-ray and SZ selection, but not for selection based on richness.
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Figure 3.12: The solid lines show the median M500c for a sample selected using
a cut on subhalo richness, defined using satellite subhaloes with a bound mass
above 2 × 1011 M⊙, and plotted along the horizontal axis. The different colours
show the results for the three different FLAMINGO resolutions. The dashed (dot-
ted) line indicates the 5th (95th) percentile mass for the sample after the cut. The
halo mass distributions for samples selected by cuts on subhalo richness are con-
verged for m8 and m9, but not for m10.
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Abstract

Galaxy cluster counts have historically been important for the measure-
ment of cosmological parameters and upcoming surveys will greatly reduce
the statistical errors. To exploit the potential of current and future cluster sur-
veys, theoretical uncertainties on the predicted abundance must be smaller
than the statistical errors. Models used to predict cluster counts typically
combine a model for the dark matter only (DMO) halo mass function (HMF)
with an observable –mass relation that is assumed to be a power-law with
lognormal scatter. We use the FLAMINGO suite of cosmological hydrody-
namical simulations to quantify the biases in the cluster counts and cosmo-
logical parameters resulting from the different ingredients of conventional
models. For the observable mass proxy we focus on the Compton-Y param-
eter quantifying the thermal Sunyaev-Zel’dovich effect, which is expected to
result in cluster samples that are relatively close to mass-selected samples.
We construct three mock surveys based on existing (Planck and SPT) and
upcoming (Simons Observatory) surveys. We ignore measurement uncertain-
ties and compare the biases in the counts and inferred cosmological parame-
ters to each survey’s Poisson errors. We find that widely used models for the
DMO HMF differ significantly from each other and from the DMO version
of FLAMINGO, leading to significant biases for all three surveys. For up-
coming surveys, dramatic improvements are needed for all additional model
ingredients, i.e. the functional forms of the fits to the observable-mass scaling
relation and the associated scatter, the priors on the scaling relation and the
prior on baryonic effects associated with feedback processes on the HMF.

4.1 Introduction

The standard model of cosmology, ΛCDM, consisting of a universe filled mostly
by dark energy and cold dark matter, has so far been successful at describing
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observations, but cracks may have started to appear. When comparing the val-
ues of cosmological parameters inferred from the cosmic microwave background
(Planck Collaboration et al., 2020a) with the same values obtained from local
measurements (e.g. Riess et al., 2022; Heymans et al., 2021; Abbott et al., 2022)
tensions have started to pop up. These tensions exist in particular for the Hubble
constant, H0, and for the clustering parameter σ8. With the advent of surveys
like Euclid (Euclid Collaboration et al., 2024) and LSST (Ivezić et al., 2019), we
are close to getting a statistically robust measurement of σ8. It it thus imperative
for models assuming ΛCDM to have high accuracy and precision, while keeping
the door open to potential extensions.

The tension in σ8 is currently at the 2−3σ level (Heymans et al., 2021; Abbott
et al., 2022; Miyatake et al., 2023; McCarthy et al., 2023). Surveys like Euclid
and LSST will provide us with much tighter constraints based on weak lensing
and galaxy clustering. Another promising avenue is to approach the tension from
many different directions. In additions to lensing, we can, for example, use the
Sunyaev-Zel’dovich (SZ) effect power spectrum (e.g. Sunyaev & Zeldovich, 1972;
Planck Collaboration et al., 2014b; Bleem et al., 2022), cluster counts (e.g. Planck
Collaboration et al., 2016a; Bocquet et al., 2024; Ghirardini et al., 2024), CMB-
lensing (e.g. Planck Collaboration et al., 2020b) and all their cross-correlations
to constrain cosmology. These independent probes are not only a way to increase
our constraints on σ8, but, if the tensions persist, they can also provide valuable
insight into how to extend the ΛCDM model.

Here we will investigate cosmological constraints via cluster count cosmology
(for reviews see Allen et al., 2011; Pratt et al., 2019). The number of halos as
a function of halo mass is described by the halo mass function (HMF), which is
sensitive to the cosmological parameters. In particular, the high mass end, where
clusters are found, is very sensitive to changes in σ8. Because of this sensitivity,
even a statistic as simple as counting the number of observed clusters per unit
volume can provide valuable constraints on σ8 and, to a lesser extent, Ωm, the
matter content of the Universe.

In order to count clusters above some mass limit, we need an observable
proxy for halo mass with which we can select clusters. As clusters are very
massive objects, they can be observed across almost the entire electromagnetic
spectrum. The three most favoured methods use the X-ray emission from the
hot intra-cluster medium (e.g. Pacaud et al., 2018; Liu et al., 2022, 2024), the
number of member galaxies in the optical (e.g. Black & Evrard, 2022; Artis et al.,
2022), and the distortion of the CMB spectrum due to their high electron pres-
sures via the SZ effect (e.g. Planck Collaboration et al., 2016b; Hilton et al., 2018;
Bleem et al., 2024). Additionally, methods using the cluster lensing signal are
starting to be used (Hamana et al., 2020; Chen et al., 2024). Kugel et al. (2024)
use the FLAMINGO cosmological simulations (Schaye et al., 2023; Kugel et al.,
2023) to compare the performance of the different observables and found that SZ-
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selection is generally less prone to selection effects than X-ray or galaxy richness
selection (using a window of size 5R500c

1, as appropriate for the Planck satellite).
In order to measure cosmological parameters from cluster counts, we need

accurate predictions for the expected number of clusters. The standard approach
combines a theoretical HMF with a scaling relation between halo mass and an
observable mass proxy with an assumed level of scatter around it. The scaling
relation is further assumed to be a power-law with lognormal scatter with a fixed
σ across the mass range (e.g. Rozo et al., 2014; Evrard et al., 2014; Planck Col-
laboration et al., 2016a; Bocquet et al., 2019; Costanzi et al., 2019; Chiu et al.,
2023; Ghirardini et al., 2024). HMF models typically do not account for bary-
onic effects or do so assuming a particular galaxy formation model. These as-
sumptions might induce biases in the analysis because it is unlikely that scaling
relations are perfect power-laws with mass-independent and lognormal scatter
(Kugel et al., 2024) and because poorly constrained astrophysical processes asso-
ciated with galaxy formation are expected to modify the halo masses (e.g. Vellis-
cig et al., 2014; Cui et al., 2014; Cusworth et al., 2014; Bocquet et al., 2016; Schaye
et al., 2023) and to bias the total masses measured using weak gravitational lens-
ing (Debackere et al., 2021). Getting a good grip on these assumptions and the
associated systematic uncertainties is key in making sure we can derive unbiased
cosmology results (Angulo et al., 2012; Mantz, 2019).

Compared with cosmic shear and galaxy clustering measurements, cluster
counts are less constraining for cosmological parameters. However, thanks to
ongoing and upcoming X-ray (e.g. Liu et al., 2024), optical (e.g. Artis et al., 2022)
and SZ surveys (e.g. Hilton et al., 2018; Ade et al., 2019; Klein et al., 2024; Bleem
et al., 2024) it is likely that the constraints will tighten in the near future. The
main goal of this work is to investigate if and how standard models and assump-
tions used for cluster cosmology affect the cosmological inference from cluster
counts.

The models of the HMF are usually based on cosmological dark matter only
(DMO) simulations. One of the difficulties here is that to accurately predict
galaxy clusters, simulations with a very large box size are required. Clusters
are very rare, and a large enough sample is needed to make statistically robust
predictions. In order to model the HMF different methods are used. A common
method is the one described by Jenkins et al. (2001), where an empirical formula
is fitted to DMO simulations and is then used to predict the HMF directly from
the matter power spectrum. This is the method employed by for example Tinker
et al. (2008, 2010), Bocquet et al. (2016) and Euclid Collaboration et al. (2023).
Additionally, emulators have also started to be used for the HMF (e.g. Bocquet
et al., 2020). In this case the HMF is obtained by interpolating between a set of
DMO training simulations of different cosmologies.

1R500c is the radius around a halo within which the enclosed density is 500 times the critical
density. The mass within this radius is defined as M500c.
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These standard models are mostly based on DMO simulations. However, it
is known that the HMF is modified by baryonic effects. The effects are strongest
for clusters with mass M500c ≲ 1014M⊙ (e.g. Velliscig et al., 2014; Bocquet
et al., 2016; Schaye et al., 2023). In addition to a DMO HMF, Bocquet et al.
(2016) use the HMF obtained from the Magneticum hydrodynamical simulation
(Hirschmann et al., 2014) to constrain the fitting parameters directly to the HMF
predicted by the hydro simulation. If baryonic effects are not taken into account
correctly, the analysis is inconsistent, as the scaling relations are based on the
true halo masses measured using X-rays or weak lensing rather than from DMO
simulations (e.g. Planck Collaboration et al., 2014a; Lovisari et al., 2015; Akino
et al., 2022).

Baryons need to be considered to predict observable mass proxies other than
lensing. Feedback processes associated with galaxy formation change the dis-
tribution of the gas, which will change the halo mass function and modify the
functional form of, and the scatter in the mass –observable relation. Hydrody-
namic simulations make direct predictions for both the number of clusters and
the observable mass proxies. However, most state-of-the-art simulations, such
as EAGLE (Schaye et al., 2015) and IllustrisTNG (Pillepich et al., 2018), do not
have volumes large enough to provide a statistical sample of clusters. For cluster
counts, doing zooms of individual objects (e.g. Barnes et al., 2017) is not feasible
as we need volume-limited statistics. Although projects like The Three Hundred
Project (Cui et al., 2018) and TNG-cluster (Nelson et al., 2023) can use zooms to
simulate a hundreds of clusters from a single volume, they are unable to pro-
vide volume-limited samples of clusters. For cluster counts it is necessary to use
large volumes even if this means lowering the resolution relative to simulations
focusing on galaxy evolution. This is the approach taken in projects like Cosmo-
OWLS (Le Brun et al., 2014), BAHAMAS (McCarthy et al., 2017) and Milleni-
umTNG (Pakmor et al., 2023). In addition, it is necessary to vary the uncertain
strength of feedback processes associated with galactic winds driven by star for-
mation and particularly by Active Galactic Nuclei (AGN) and to do so in amanner
constrained by observations relevant for cluster cosmology (Le Brun et al., 2014;
McCarthy et al., 2017).

For this work, we will make use of the cosmological hydrodynamic sim-
ulations of the FLAMINGO project (Schaye et al., 2023; Kugel et al., 2023).
FLAMINGO is a suite of very large volume simulations designed specifically to
investigate the interplay between effects due to baryonic processes, massive neu-
trinos, and cosmology. The simulation suite includes a hydrodynamic simulation
in a (2.8 Gpc)3 volume using (5040)3 gas particles and many model variations
in (1.0 Gpc)3 volumes. The largest volume, contains 461 (4100) clusters of mass
M500c > 1015 M⊙ (5 × 1014 M⊙) at z = 0. The FLAMINGO variations include
variations in feedback, cosmology and resolution. Due to its large volumes,
FLAMINGO provides statistically significant samples up to very high halo
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masses. The subgrid stellar and AGN feedback in the simulation have been
calibrated to match the observed low-redshift galaxy stellar mass function and
cluster gas fractions. The simulation have been shown to provide provide a good
match to X-ray observations of clusters at the profile level (Braspenning et al.,
2023). FLAMINGO was calibrated using machine learning assisted Gaussian
process emulation (Kugel et al., 2023), and the feedback variations can each be
related to systematic shifts in the cluster gas fractions and/or the galaxy mass
function. In addition, the suite includes simulations that use an alternative AGN
feedback prescription that uses kinetic jets instead of thermally driven winds,
which is calibrated to match the same observations as the thermal models.

For this work we assume that the predictions from the FLAMINGO simula-
tion are the ground truth that we compare our models against. In Kugel et al.
(2024) we found that, in FLAMINGO, the scatter around the mass-observable
scaling relation for X-ray luminosity within R500c and for Compton-Y within
5R500c has power-law tails. However, we also showed that for Compton-Y within
R500c, which is the aperture we use here, the scatter is close to lognormal, but
the scatter still changes with mass and redshift. Additionally, the scaling re-
lations deviate from single power-laws and change between different feedback
variations (Schaye et al., 2023; Braspenning et al., 2023). We will investigate how
deviations from assumed scaling relations and scatter influence cluster counts
and the cosmology inferred from them. We choose to focus on SZ-selected sam-
ples since those are intrinsically the least biased compared to a mass-selected
sample (Kugel et al., 2024). The systematic errors that we report here are thus
likely smaller than for other selection methods. In this work we do not attempt
to forward model the selection effects using virtual observations. In the obser-
vations, SZ-selection is accomplished by applying a matched filter to CMB maps
at different frequencies (see e.g. Melin et al., 2006, 2012; Hilton et al., 2018). At
the higher resolutions of current and upcoming CMB surveys, this will introduce
additional selection effects via, for example, source confusion, foregrounds (see
e.g. Melin et al., 2018; Zubeldia et al., 2023), and the effect of beam smearing. In
this work we neglect these effects and leave them for a future study, noting that
the data products needed for such a work are available within the FLAMINGO
suite of simulations.

The paper is structured as follows. In Section 4.2 we describe the FLAMINGO
simulations, the models and functional forms used to predict cluster counts, and
how we use those predictions to constrain cosmological parameters. In Sec-
tion 4.3 we show how different assumptions and changes due to the variations
in the FLAMINGO simulation suite affect the predictions for cluster counts and
the inferred cosmology. We summarise the results in Section 4.4.
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4.2 Methods

In this section we describe the methods we use to predict cluster counts using the
FLAMINGO simulations. We briefly introduce the FLAMINGO simulation and
how we identify haloes in §4.2.1. We describe our predictive model for cluster
counts in §4.2.2. The three sample definitions used throughout this paper are
introduced in §4.2.3. We finish this section by describing the likelihood and how
it is sampled in §4.2.4.

4.2.1 FLAMINGO

To construct virtual cluster catalogues we make use of the HMF, observable-
mass scaling relations and their scatter obtained from the FLAMINGO simula-
tions (Schaye et al., 2023; Kugel et al., 2023). We will make use of the simu-
lations at FLAMINGO’s intermediate resolution (mgas = 1.09 × 109 M⊙) in box
sizes of (1 Gpc)3. These simulations use 2 × 18003 gas and dark matter parti-
cles, 10003 neutrino particles, and all assume the Dark Energy Survey year 3
(Abbott et al., 2022) cosmology (Ωm = 0.306, Ωb = 0.0486, σ8 = 0.807, H0 =
68.1 km/s/Mpc, ns = 0.967). The simulations are run with the cosmological
smooth particle hydrodynamics and gravity code SWIFT (Schaller et al., 2024)
using the SPHENIX SPH scheme (Borrow et al., 2022). The initial conditions are
obtained from a modified version of monofonIC (Hahn et al., 2021; Elbers et al.,
2022), and neutrinos are implemented with the δf method (Elbers et al., 2021).

The FLAMINGO subgrid physics is an evolution the models developed for
OWLS (Schaye et al., 2010) and used in BAHAMAS (McCarthy et al., 2017). It
includes radiative cooling (Ploeckinger & Schaye, 2020), star formation (Schaye
&Dalla Vecchia, 2008), stellar mass loss (Wiersma et al., 2009), kinetic supernova
feedback (Dalla Vecchia & Schaye, 2008; Chaikin et al., 2022b,a), super massive
black holes (Springel et al., 2005; Bahé et al., 2022) and AGN feedback in both
thermal (Booth & Schaye, 2009) and kinetic form (Huško et al., 2022). One of the
new features is that the subgrid physics was calibrated by fitting the simulations
tomatch the z = 0 galaxy stellar mass function (in themass range 1010 M⊙ ≲M∗ ≲
1011.5 M⊙) and the gas fractions in low-z groups and clusters (up to a mass of
M500c = 1014.3 M⊙) using machine learning (Kugel et al., 2023). The samemethod
was used to design a set of variations which are directly based on the observed
error bars. Of particular interest for this work are the variations in the cluster gas
fraction and AGNmodel, which are denoted as fgas_±Nσ and Jet_fgas_±Nσ . For
these models the Nσ denotes by how many observed standard deviations the gas
fractions have been shifted up or down with respect to the fiducial model. The
Jet models make use of kinetic jets for the AGN feedback instead of the thermal
model used for all other runs. These Jet models are calibrated to match the same
data as the corresponding thermal AGN feedback models. More details can be
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found in Schaye et al. (2023).
To obtain catalogues of (sub)haloes from the simulation, we make use of a

modified version of Hierarchical Bound Tracing+ (HBT+) (Han et al., 2012, 2017,
Forouhar Moreno et al. in prep). The modifications include required extensions
required for the application to hydrodynamic simulations. HBT+ tracks haloes
trough "history space". After a halo has been identified as a friends-of-friends
group, HBT+ tracks the particles of the halo trough cosmic time, and converts
it to a satellite when it becomes part of another friends-of-friends group. For
each central halo in the HBT+ catalogue we use the Spherical Overdensity and
Aperture Processor (SOAP2, McGibbon et al. in prep) to calculate M500c and the
integrated Compton-Y. The Compton-Y contribution of each particle is stored in
the snapshots and is calculated via

yi =
σT

mec2
ne,ikBTe,i

mi

ρi
, (4.1)

where σT is the Thomson cross section, me is the electron mass, c is the speed of
light, kB is the Boltzmann constant, ne,i is the electron number density, Te,i is the
electron temperature, mi is the mass and ρi is the density of the particle with in-
dex i. The contribution for each halo can be found by summing the contribution
of all particles within an aperture. In this work we use the integrated Compton-Y
within R500c.

4.2.2 The cluster count model

There are three key ingredients to predict the number of clusters that are ob-
served in a cluster survey:

1. The number of halos per unit mass and volume via the HMF.

2. The probability for a halo with a given mass to have a certain observable
property via a median scaling relation and the associated scatter.

3. The probability for a halo with a certain observable property to be observed
in the survey via the selection function.

Our primary goal is to investigate the effect of the different assumptions that are
made for the first two of these items. Because we focus on the deviations on the
theory side, we omit from our analysis the conversion between the observable and
the signal measured at the telescope. Using these assumptions, we can predict the

2https://github.com/SWIFTSIM/SOAP

https://github.com/SWIFTSIM/SOAP
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number of clusters using the following integral

N (XC) =
∫ zmax

0

∫ Asky

0

∫ M500c,max

M500c,min

ϕ(M500c, z,θ, aAstro)×

χ(M500c, z,XC)
dV

dΩdz
(θ)dM500cdΩdz, (4.2)

where ϕ(M500c,θ, aAstro, z) is the HMF, which explicitly depends on the astro-
physical parameters aAstro, like the gas fraction on clusters and the assumed
AGNmodel, χ(M500c, z,XC) gives the probability of observing a cluster with mass
M500c at redshift z given a cut (i.e. selection limit) XC on observable X, Asky is the
survey angular area on the sky, and dV

dΩdz (θ) is the differential comoving volume,
which, like the HMF, depends on the cosmological parameters θ. We note here
that in the integralM500c refers to the true total mass, including baryonic effects.
We integrate from redshift zero to zmax = 2, noting that going to higher redshifts
makes a negligible difference for the cuts we are interested in. ForM500c we inte-
grate from 1012 M⊙ to 1016 M⊙, noting that we run out of halos before we reach
the maximum mass. The minimum mass of 1012 M⊙ ensures we do not miss any
halos for the observational selection cuts we apply. We are specifically interested
in selecting clusters via their Compton-Y contribution within R500c. In this case
X becomes Y500c, which we will denote simply as Y , with the cut being defined
as YC.

For the selection function we use a simple step function

P (Y |YC) =

1 if Y > YC,

0 if Y < YC.
(4.3)

Since we are interested in the effect of theoretical uncertainties, this selection
function gives us results that are easily interpretable. To obtain χ(M500c, z,XC)
we use the mass observable scaling relation P (Y |Ŷ (M500c, z)). In this case Ŷ is the
median value of Y at a given M500c and z as given by the scaling relation.

We consider four cases designed to separate the effects of two of the differ-
ent model ingredients: the power-law observable-mass scaling relation and the
associated scatter:

1. Taking both the scaling relation and scatter from the simulation.

2. Using a power-law scaling relation with lognormal scatter, both fit to the
simulation results, referred to as "PL+LN".

3. Using the scaling relation from the simulation with lognormal scatter fit to
the simulation results, referred to as "LN".

4. Using a power-law scaling relation fit to the simulation results with scatter
from the simulation, referred to as "PL".
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Figure 4.1: The redshift distribution of cluster number counts for our fiducial
(L5p6DMO HMF and L1_m9 Y −M500c scaling relation and scatter) model. The
three different lines show the predictions for the three mock survey sizes we in-
vestigate in this paper. The error bars show the Poisson errors. Note that the
PLANCK- and SPT-like surveys use the left y-axis, while the SO-like survey uses
the right y-axis. Note that the SO-like errors are smaller than the line width in
this figure.

By comparing the four cases we can assess potential systematics due to conven-
tional assumptions. When describing the changes between these four cases, it
is important to remember that the quantity we need is χ(M500c, z,XC), the prob-
ability of observing an object with a given mass and redshift given a selection
cut.

In the case where we use both the scaling relation and the scatter from the
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simulation, we use only the binned outputs of the simulation. To obtain the scal-
ing relation from the simulations we set up a grid in M500c and z. We sample the
mass in bins of width 0.1 dex between M500c = 1012 M⊙ and 1016 M⊙, and we
sample the redshift in bins of 0.05 from z = 0 to z = 3. In each bin we calculate
the number density of objects and the median value for Y . Additionally, at each
mass and redshift we use 800 bins between a Y of 10−10 and 10−2 to sample the
distribution of Y for each mass and redshift bin. To obtain the probability of ob-
serving a halo in this mass-redshift bin, we want to find the fraction of halos that
have Y > YC. For our selection function, this is equivalent to

χ(M500c, z,XC) =
∫ ∞
−∞

P (Y |Ŷ (M500c, z))P (Y |YC),

= 1−CM500c,z(YC), (4.4)

where CM500c,z(YC) is the normalised cumulative distribution function (CDF) at
fixed mass and redshift. For each mass-redshift bin we create the CDF by inter-
polating the 800 Y bins, giving us a smooth function. As the simulation binning
is already a combination of the scatter and scaling relation, we do not need to
take any additional steps when the goal is using both the scaling relation and
scatter from the simulations.

In the case of using a power-law scaling relation with lognormal scatter, we
instead assume a functional form to obtain the required probabilities. The func-
tional form we use was used by Planck Collaboration et al. (2014a, 2016a) and
Salvati et al. (2022) and is given by

E−β(z)
[

D2
A(z)Ŷ

10−4 Mpc2

]
= Y∗

[
h
0.7

]−2+α [
(1− b)M500c

6× 1014 M⊙

]α
, (4.5)

where the fitting parameters Y∗, the power-law amplitude, α, the power-law
slope, β, the slope of the redshift scaling, and b, the hydrostatic bias, are fit to the
results from the simulation. Any change is thus purely due to slight deviations
from a power-law in the simulation. The values and priors can be found in
Table 4.1.

For lognormal scatter we can compute the CDF via

1−CM500c,z(YC) =
1
2

[
1− erf

(
log10YC − log10 Ŷ (M500c, z)√

2σ

)]
, (4.6)

where σ is the standard deviation parameterising the lognormal scatter in Y in
dex and Ŷ (M500c, z) is the median. The value of σ is taken from Planck Collab-
oration et al. (2014a, 2016a). Note that the implementation of lognormal scatter
has the scaling relation as a direct input. So we can use both the power-law from
Eq. 4.5 or directly use the simulation prediction, covering cases two and three.

Our final case is using a power-law for the scaling relation, with scatter from
the simulation. In this case we again make use of the binned interpolators that
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Table 4.1: Priors on the cosmological and power-law fit parameters (Eq. 4.5)
taken from the MiraTitanEmulator and Planck Collaboration et al. (2016a) re-
spectively and the fiducial FLAMINGO values. Here U (x,y) stands for a uniform
distribution between x and y,N (µ,σ ) stands for a normal distribution with mean
µ and standard deviation σ . The last two parameters, β and b, are fixed, though
we do give the uncertainty on the parameter β from Planck Collaboration et al.
(2016a) for context.

Parameter Prior FLAMINGO
Ωm U (0.259,0.334) 0.306
σ8 U (0.7,0.9) 0.807
log10Y∗ N (−0.19,0.02) −0.098
α N (1.79,0.08) 1.66
σlog10 N (0.075,0.01) 0.081
β 0.66 (±0.50) 0.89
b 0.743 0.743

are used for the simulation only case. To conserve the scatter, we calculate for
each mass and redshift bin what the difference is between the power-law scaling
relation fit to the simulation prediction and the actual simulation scaling relation.
We then recenter the distribution in each mass-redshift bin on the power-law
predictions. This conserves the shape of the scatter in the simulation, but the
median now follows the power-law scaling relation.

To obtain the HMF from the simulation, we use the same binning approach
the get the number density of objects at each mass and redshift. However, in
order to be able to vary and fit the cosmology, we need to know how the HMF
changes with cosmology. We investigate the accuracy of the available models for
the HMF by Tinker et al. (2010), Bocquet et al. (2016) and Bocquet et al. (2020,
which we will refer to as the MiraTitanEmulator). They can be divided into two
categories. The models by Tinker et al. (2010) and Bocquet et al. (2016) are based
on the fitting formula introduced by Jenkins et al. (2001) and they derive the HMF
directly from the linear theory matter power spectrum. The MiraTitanEmulator
is an emulator that was trained on the MiraTitan set of DMO simulations (Heit-
mann et al., 2016). Tinker et al. (2010) and Bocquet et al. (2016) directly provide
the HMF based on M500c. For the MiraTitanEmulator, we convert from M200c to
M500c assuming an NFW density profile and using the mass-concentration rela-
tion by Diemer & Joyce (2019).

All these HMFs model the DMOHMF. To investigate the effects of baryons on
the HMF, we allow for the following correction

ϕ(M500c,Hydro, z) = ϕDMO(M500c,DMO, z)Fcor,bar(M500c,DMO, z), (4.7)

where Fcor,bar(M500c, z) gives the correction factor to convert from a DMO HMF



4

4.2. Methods 163

to the HMF affected by baryons. We measure the correction factor from the
FLAMINGO simulations using the same binning for each HMF as described ear-
lier. If either the DMO or hydro HMF has no halos in a bin, we set the ratio to
one. We note here that not using this correction causes an inconsistency in the
calculation as the scaling relations are always based on the hydrodynamicmasses.

As we have continuous analytic alternatives for each of the ingredients of the
cluster count model, we have verified that our choice of binning (0.1 dex inM500c
and steps of 0.05 in z) does not lead to significant numerical errors. We evaluate
our continuous assumptions on the same grid of inputs as the simulations. This
allows for fair comparisons between the simulation and analytic predictions and
allows for a significant speedup of the code.

To ensure that the number counts vary continuously as a function of redshift,
which is necessary as we want to be able to deviate from the simulation snapshot
redshifts when defining our redshift bins, we first perform the following integral

dN (Y > YC)
dz

(z) =
∫ Asky

0

∫ M500c,max

M500c,min

ϕ(M500c, z,θ, aAstro) ×

χ(M500c, z,YC)dM 500cdΩ, (4.8)

resulting in a redshift density distribution. We use linear interpolation to obtain
a continuous version of the distribution. We then numerically integrate this con-
tinuous function for each bin using a quadratic integrator. We have verified that
these choices do not lead to significant numerical errors.

4.2.3 Definition of samples

We will use three fiducial sample definitions, based very loosely on available SZ
cluster samples. We include a shallow full-sky sample, using YC = 10−4 Mpc−2.
This has a total of about 360 clusters for our fiducial simulation, which is sim-
ilar to the number of objects in the Planck survey (Planck Collaboration et al.,
2016a). We also include a 5000 deg2 survey with a cut of YC = 3 × 10−5 Mpc−2.
This leads to about 1000 objects, making it similar to the current SPT survey
(Bocquet et al., 2024). As a reference for future observations, we also include a
Simons Observatory (SO)-like survey. This survey covers 40% of the sky with
a cut of YC = 10−5 Mpc−2. This results in about 27000 objects, in line with SO
forecasts (Ade et al., 2019). To create model data we sample the distribution at
every 0.1 in redshift (i.e. a coarser redshift sampling than used for the simula-
tions) between z = 0 and z = 2, resulting in 19 bins. For each of these samples
we will assume the observable mass scaling relation from our fiducial (1 Gpc)3

volume, L1_m9, with the HMF from our biggest (5.6 Gpc)3 DMO volume. This
ensures we use our calibrated model for the hydro, while using a large volume
to reduce cosmic variance errors on the HMF. This does imply that our fiducial
model has the common inconsistency that the scaling relation is based on hydro
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Figure 4.2: The left panel shows the ratio between the three HMF models spec-
ified in the legend and the FLAMINGO L5p6_m10_DMO for the FLAMINGO
cosmology at z = 0. The black dotted horizontal line shows the one-to-one line
and the grey dotted horizontal line shows the ten per cent region. The grey dot-
ted vertical line roughly coincides with the lowest cluster masses that will be in
the deepest (SO) sample. The right panel shows the distribution of clusters with
redshift for the three different surveys, given by different line-styles. The differ-
ent coloured lines show the cluster counts when assuming different HMFmodels.
The black line with error bars shows the cluster counts from the fiducial model
(L1_m9 observable-mass scaling relation and L5p6_m10_DMO HMF). The error
bars indicate the Poisson errors in each bin. Note that the left y-axis is for the dot-
ted (Planck) and solid (SPT) lines, while the right y-axis is for the dashed lines
(SO).

masses, while the HMF uses DMO masses, without correcting for it. We choose
instead to investigate this potential effect separately. The distribution of sources
with redshift is shown in Fig. 4.1. From the figure it is clear that the error bars
become much smaller for the larger samples. There is a also a slight shift towards
sampling higher redshift objects with deeper surveys. Due to the limited redshift
range of the MiraTitanEmulator, we are unable to use its predictions for number
counts at z > 2. However, from this figure it is clear that this leads to missing a
negligible fraction of all sources, even for the deepest survey.

4.2.4 The likelihood

To fit for cosmological parameters, we make use of a Poisson likelihood. We have
verified that this is a valid assumption by bootstrap resampling different parts of
the sky in the halo lightcone, finding that the error on the cluster counts follows
a Poisson distribution. Taking the model counts λi and the observed counts xi for
each redshift bin i, the likelihood of binned data x being the result of model data
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λ can be expressed as

P (x|λ) =ΠN
i

e−λiλxi
i

xi !
, (4.9)

lnP =
N∑
i

(xi lnλi −λi − ln(xi !)) , (4.10)

where we will use lnP as the log likelihood. For our cosmological fits we vary
only Ωm and σ8, keeping all the other values fixed to the values from Abbott
et al. (2022), the cosmology used for FLAMINGO. For the cosmological param-
eters we use flat priors that are based on the available parameter space for the
MiraTitanEmulator, which can be found in Table 4.1. We use the publicly avail-
able package emcee (Foreman-Mackey et al., 2013) using the ensemble sampler.
We run the chains using 40 walkers for 2500 steps, where the first 500 are dis-
carded.

To quantify the absolute and statistical biases of our posteriors with respect
to the truth, we employ two different measures of the bias. The first gives us the
fractional error of the median compared with the truth

Fractional error =
x −µ
µ

, (4.11)

where x is the median and µ is the true value. We calculate the fractional error
separately for σ8 and Ωm. Additionally, we calculate how many sigmas the truth
is away from the posterior median values using the geometric distance assuming
a covariant Gaussian

Nσ = (x −µ)TΣ−1(x −µ), (4.12)

whereΣ is the covariancematrix. We provide these two different bias estimates to
give an indication of the level of precision at which certain biases start to become
dominant and to show how statistically significant the biases are for a purely
cosmic-variance limited cosmological inference. Hence, the number of σ should
be interpreted as a worst case scenario for a given fractional error, as observa-
tional uncertainties will likely significantly reduce this number.

4.3 Results

In this section we will investigate how the following assumptions and uncertain-
ties affect cluster counts:

• The DMO HMF model (§4.3.1)

• The effect of baryons on the HMF (§4.3.2)

• The functional forms for the analytic observable-mass scaling relation and
scatter (§4.3.3)
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Figure 4.3: The left panel shows the ratio between the HMF of the differ-
ent FLAMINGO feedback variations, given by the legend, and the FLAMINGO
L1_m9_DMO at z = 0. The black dotted horizontal line shows the one-to-one
line and the grey dotted horizontal lines show ten per cent deviations. The grey
dotted vertical line roughly coincides with the lowest mass clusters that will be
in the deepest (SO) sample. The functions in the left panel are used to modify
the HMF of the fiducial DMO model and to create the right panel which shows
the distribution of clusters with redshift for the three different surveys, indicated
by different line-styles. The different coloured lines show the effect that baryons
have on the HMF for each FLAMINGO simulation. The black lines with error
bars shows the cluster counts from the fiducial model (L1_m9 observable-mass
scaling relation and L5p6_m10_DMO HMF). The error bars are the Poisson er-
rors in each bin. Note that the left y-axis is for the dotted (Planck) and solid
(SPT) lines, while the right y-axis is for the dashed lines (SO).

• The effect of changes in the assumed scaling relation (§4.3.4)

For the effect of baryons on the HMF and the effect of changes in the assumed
scaling relation we will make use of the variations in gas fraction and AGN feed-
back model in the FLAMINGO suite of simulations. After investigating the effect
on cluster counts for each type of assumption separately, we will compare the
biases induced by different methods (§4.3.5) and see quantitatively how they im-
pact the inference of σ8 and Ωm (§4.3.6).

4.3.1 DMOHalo mass function models

First we investigate the effect of different models for the DMO HMF. Fig. 19
of Schaye et al. (2023) shows that the FLAMINGO DMO HMF agrees well with
models taken from the literature. However, those plots were made using the Ve-
lociraptor (Elahi et al., 2019) halo finder forM200m, while we use the HBT+ (Han
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et al., 2017) halo finder and M500c. Furthermore, there were some systematic de-
viations that could lead to biases. We focus on comparing three widely used DMO
HMF models at fixed cosmology with FLAMINGO: Tinker et al. (2010), Bocquet
et al. (2016) and the MiraTitanEmulator (Bocquet et al., 2020). We compare their
predictions for the HMF and the resulting cluster counts for the FLAMINGO
cosmology and compare with our fiducial setup, for which the HMF is based on
the L5p6_m10_DMO simulation. We investigate the accuracy of the models in
Fig 4.2. In the left panel we show the ratio between the different HMF models
and the L5p6_m10_DMO FLAMINGO simulation at z = 0. In the right panel we
show the distribution of clusters with redshift for the three different mock sur-
veys indicated with different line styles. In both panels the colours indicate the
different HMF models.

The Tinker et al. (2010) model and the MiraTitanEmulator fall outside of the
error bars for all three mock surveys. As can be seen in the left panel, the Tinker
et al. (2010) HMF over-predicts the number counts at all masses. From the right
panel it is clear that the over-prediction is worst at intermediate redshifts, but
that the agreement becomes better for z ≥ 1. However, this is beyond the redshift
range that contain most objects for our three mock surveys.

The MiraTitanEmulator is relatively accurate at low mass, overshooting by
only a few per cent up to a mass of M500c ≈ 2 × 1014 M⊙. Above this mass there
is a large upturn and the model over-predicts the number of massive clusters. In
the right panel it can be seen that this leads to a systematic over-prediction of
the number of objects for all three mock surveys for the entire redshift range. To
compute the M500c mass function using the MiraTitanEmulator, which predicts
the M200c HMF, we assumed a NFW density profile and the mass-concentration
relation from Diemer & Joyce (2019). At the steep end of the HMF, slight devia-
tions from the truth and scatter in the mass-concentration relation has a big effect
on the results. Our results highlight the fact that it is important to use models
that emulate the quantity of interest directly, as conversion factors will introduce
additional biases.

The HMF model that best recovers the FLAMINGO cluster counts is the
model from Bocquet et al. (2016). From the left panel of Fig. 4.2 it is clear
that this is due to the fact that the model agrees with the simulation at the
few per cent level up to M500c ≈ 7 × 1014 M⊙. Above this mass the model
underpredicts the number of clusters. This explains the behaviour of this model
in the right panel. For the Planck-like survey, the model undershoots the results,
as the Planck-like survey is mostly limited to very massive clusters. For the
deeper surveys, that probe objects down to a lower mass than where the model
starts to deviate, there is reasonable agreement. For the SPT-like survey it still
undershoots, but stays largely within the error bars. For much of the redshift
range, there is good agreement with the SO-like survey, only deviating at high
redshifts, though it is hard to see in this plot whether it stays within the error
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bars. Because of this relatively good agreement, we will assume the model by
Bocquet et al. (2016) for later comparisons and fits where we need to vary the
cosmology.

From this comparison of HMF models it is clear that the choice of model will
have a direct influence on the inferred cosmology, and that there are big differ-
ences between the models. For M500c ≲ 2× 1014 M⊙ the models by Bocquet et al.
(2016) and Bocquet et al. (2020) are in good agreement with the FLAMINGO
DMO simulation. However, most objects, especially in SZ-selected surveys, will
have higher masses than this. While the sensitivity of the high mass end of the
HMF to cosmology makes it an interesting target, the model predictions are very
sensitive to any of the choices made. This includes, for example, mass con-
versions, simulation box size effects, halo definitions and the halo finder used.
Therefore it might be more beneficial to focus on slightly lower mass objects that
suffer less from these systematic errors, something that will happen naturally
with upcoming surveys.

4.3.2 Baryonic effects on the halo mass function

In addition to biases introduced by the choice of DMO HMF model, all of the
models neglect the effect of baryons on the halo masses. If the observable-mass
scaling relation is obtained from hydrostatic masses (Planck Collaboration et al.,
2016a) or weak lensingmasses (Bocquet et al., 2024), then it is the total mass, that
includes both baryons and dark matter, that is probed. If the halo baryon fraction
deviates from the universal fraction, then this leads to an inconsistency between
the scaling relation and the HMF used for modelling. For the largest objects the
effect is small, but the effect is expected to increase towards lower masses (see
e.g. Velliscig et al., 2014; Cui et al., 2014; Schaye et al., 2023). To quantify the un-
certainty in the baryonic effect on the HMF, we will make use of the FLAMINGO
feedback variations, which span the uncertainties in the observed gas fraction
data (Kugel et al., 2023).

The impact of the baryonic effects on the HMF is shown in Fig. 4.3. Similar to
Fig. 4.2, the left panel shows the ratio between the HMF of the variations and the
L1_m9_DMO simulations at z = 0. We choose to compare with the L1_m9_DMO
instead of the L5p6_m10_DMO as these simulations use the same initial condi-
tions and therefore provide a fairer comparison when investigating just the effect
of baryons. Baryonic effects suppress the mass function more strongly at lower
masses. For the fiducial model the suppression increases from ≈ 20 per cent at
M500c ∼ 1013 M⊙ to ≈ 10 per cent at 1014 M⊙. As expected, models with lower gas
fractions lead to stronger suppression. A (1 Gpc)3 volume only contains a lim-
ited number of objects with M500c > 1015 M⊙. Therefore, the ratio becomes quite
noisy for the highest masses. As noted in Section 4.2.2, we set the ratio to one
when either of the bins (in the DMO or the Hydro simulation) is empty, which
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Figure 4.4: The left panel shows the ratio between the best-fitting power-law
Y500c(M500c) to the scaling relation of the L1_m9 simulation and the actual scal-
ing relation at different redshifts, indicated by the different colours. The black
dotted horizontal line shows the one-to-one line and the grey dotted horizontal
line shows ten per cent deviations. The grey dotted vertical line indicates the
lower mass limit used for fitting which roughly coincides with the lowest mass
clusters that will be in the deepest (SO) survey. The right panel shows the dis-
tribution of clusters with redshift for the three different surveys, indicated by
different line-styles. The different coloured lines show the effect of assuming the
scaling relation to be a power-law (PL), the scatter to be lognormal (LN), the HMF
to be given by the MiraTitanEmulator (MTE) and combinations of these assump-
tions. The black line with error bars shows the cluster counts from the fiducial
model (L1_m9 observable-mass scaling relation and L5p6_DMOHMF). The error
bars are the Poisson errors in each bin. Note that the left y-axis is for the dotted
(Planck) and solid (SPT) lines, while the right y-axis is for the dashed lines (SO).

can be seen for the largest masses.
The right panel shows how the deviations from DMO, shown in the left panel,

propagate into changes in the cluster counts. Because the ratio is noisy for the
highest masses, we can see in the right panel that some of the models fall outside
the error bars for the Planck-like survey. The fact that we find disagreement for
the sample that covers the highest mass clusters indicates that we are dominated
by small number statistics due to the limited simulation volume. Therefore, we
choose not to make any definite statements on whether the effect of baryons on
the HMF would lead to a large bias for a Planck-like sample.

For the SPT-like survey most variations fall within the Poisson error bars, only
the most extreme models, fgas-8σ and Jet_fgas-4σ , fall outside the error bars.
These models start to deviate by over 10% close to the mass cut. For the SO-like
survey, nearly every baryonic modification leads to disagreements beyond the
Poisson error bars over most of the redshift range, especially at z ≈ 0.5. Only the
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Figure 4.5: The relative impact of changes to the power-law parameters to the
cluster counts. From left to right, the three panels show the impact for the
Planck-, SPT- and SO-like surveys respectively. The different line-styles indicate
the three different power-law parameters (Eq. 4.5): the amplitude Y∗, the scaling
with mass α and the redshift scaling β. The red (blue) lines increase indicate an
increase (decrease) by 10% relative to the fiducial value of each parameter. The
black dot-dashed line indicates the one-to-one line. The grey band indicates the
Poisson errors on each sample. Accuracy higher than 10% is needed for every pa-
rameters for SPT and SO. The sensitivity to the mass scaling increases for deeper
surveys.

weakest feedback model has a small enough impact to still be consistent with the
fiducial model. This can also be seen in the left panel, where the fgas+2σ model
is consistent within a few per cent for the masses probed by the SO mock survey,
indicated with a vertical dotted line. We conclude that future observations cannot
neglect the effect that baryons have on the HMF.

4.3.3 Fit to the observable-mass scaling relation

The next two subsections explore the effect of varying the assumptions for the
mass-observable scaling relation, i.e. the relation between M500c and Y500c, and
its scatter. In this section, we investigate the effect of assuming a power-law
with lognormal scatter to model the scaling relation. In subsection §4.3.4 we
explore the effect of getting the scaling relation slightly wrong by making use of
the FLAMINGO feedback variations.

The power-law parameterization we use is described in Section 4.2.2 and is
taken from Planck Collaboration et al. (2016a) (Eq.4.5). Instead of using their
best fitting values, we refit the amplitude Y∗, the slope α, the redshift scaling β
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and the lognormal scatter σ . We re-fit to isolate the effects of assuming a power-
law functional form. We only fit these parameters for massesM500c > 2×1014 M⊙.
The result of this can be seen in the left panel of Fig. 4.4. The re-fit ensures that
the relation leads to a match for the masses probed by our three surveys, across
all redshifts, though extrapolation to lower cluster masses would result in large
errors. The results of the fit are listed in Table 4.1.

If we compare the values we find with those given in literature, we find that
the amplitude Y∗ and the slope α both have to change by more than 1σ . The
redshift scaling β is within the 1σ range. However, we note that changing β
within the 1σ range can lead to large changes in the predicted cluster counts.
The value β = 0.89 that we find for FLAMINGO is also significantly different
from the self-similar scaling, β = 2/3. The hydrostatic mass bias b is degenerate
with the amplitude Y∗. The parameters β and b are both kept fixed in the analysis
by Planck Collaboration et al. (2016a). To get rid of the degeneracy due to the
hydrostatic bias we assume a fixed value given by the FLAMINGO calibration
by Kugel et al. (2023). However, we note that using the value of the hydrostatic
bias used by Planck Collaboration et al. (2016a) (b = 0.8) has a big impact on the
resulting value of Y∗. The log-normal scatter we find for FLAMINGO, σ = 0.081,
is consistent with the Planck prior, σ = 0.075± 0.01. As the scatter for Compton-
Y within R500c is close to lognormal (Kugel et al., 2024), any deviations found
here are more likely to be an effect of the scatter not being constant with mass or
redshift.

While we obtain a good match to the Compton-Y values for the masses we
fit to, we find that the scaling relation quickly starts to deviate at lower masses,
indicating that a double power-law might better describe the scaling of the in-
tegrated SZ signal with mass. However, with current facilities we cannot probe
these masses efficiently observationally, so we do not attempt to constrain a dou-
ble power-law. Above the mass cut we match the relation up to redshift two.

The impact of the assumptions for the scaling relation on the cluster counts
can be seen in the right panel of Fig. 4.4. The different abbreviations stand for
lognormal scatter (LN), power-law (PL) and using the model by Bocquet et al.
(2016) (B16) for the HMF. For the Planck-like survey, the power-law leads to a
substantial decrease in the number of objects across most redshifts. At z > 0.7,
all assumptions lead to large overestimates. Just like for the HMF modification,
it is likely that this behaviour is in large part due to the limited statistics for very
massive clusters in the L1_m9 simulation. For the SPT-like survey we see that the
agreement is generally very good. At nearly all redshifts, the lognormal scatter
and power-law assumptions have a negligible effect. Only when combined with
the HMF model from Bocquet et al. (2016) (LN+PL+B16), which we know from
Fig. 4.2 leads to deviations, do we see a noticeable impact. As shown in a previous
section, this is driven by errors in the HMF.

For the SO-like survey, the relative differences seen in the plot are very small,
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Figure 4.6: The left panel shows the ratio of the Y500c(M500c) scaling relation of
the different FLAMINGO feedback variations, listed in the legend, and that of the
fiducial L1_m9 simulation at z = 0. The black dotted horizontal line shows the
one-to-one line and the dotted grey horizontal line show ten per cent deviations.
The grey dotted vertical line roughly coincides with the lowest masses that will
be in the deepest (SO) sample. The right panel shows the distribution of clusters
with redshift for the three different surveys, indicated by different line-styles.
The different coloured lines show the effect changing the scaling relation to one
of the variations has for each FLAMINGO simulation. The black line with error
bars shows the cluster counts from the fiducial model (L1_m9 observable-mass
scaling relation and L5p6_m10_DMOHMF). The error bars are the Poisson errors
in each bin. Note that the left y-axis is for the dotted (Planck) and solid (SPT)
lines, while the right y-axis is for the dashed lines (SO).

and there are almost no systematic offsets. However, as the sample is much larger,
the requirements for a hypothetical cosmological parameter inference to be accu-
rate down to cosmic variance levels are also much stricter. The largest deviation
is caused by the introduction of the HMF model by Bocquet et al. (2016), as ex-
pected from section 4.3.1. This is seen for z > 1 where there is an over-prediction
of the number of clusters. Other deviations can be seen around the peak of the
distributions, where all the assumptions lead to an underestimate that is outside
the Poisson error bars either before the peak, for LN, or after the peak, for PL and
LN+PL. As discussed in Section 4.3.5, these minute differences still lead to larger
errors than those due to cosmic variance.

Provided the observed scaling relations can be constrained in an unbiased
way, these results show that the commonly assumed power-law functional form
is unlikely to lead to a large bias, at least not for surveys that are only sensitive to
masses M500c > 2 × 1014 ⊙. However, the values of the parameters of the scaling
relation will need to be fit with high accuracy. To investigate what accuracy is
needed, we look at the effect of changing each parameter in Fig. 4.5. In contrast
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with previous figures, we show the relative change with respect to a model that
uses the fiducial values for the fitting parameters. In other words, the difference
between the one-to-one line and the coloured lines is only due to the change in
a single parameter. The different line-styles indicate the three different param-
eters we vary. The colour indicates whether the parameter is increased (red) or
decreased (blue) by 10%. The grey coloured regions indicate the Poisson errors
on each survey. For reference, for the constraints used by Planck Collaboration
et al. (2016a) the relative uncertainty is about 10% for Y∗, 5% for α and 75% for
β. This is improved upon by Bocquet et al. (2024). While they use a different
definition for the scaling relations, their respective parameters for Y∗, α and β
have an accuracy of 8.7%, 2.3% and 14.8% respectively in their final analysis.

Looking at the different line-styles in Fig. 4.5, we can see that for a large part
of the redshift range, the parameters α and β have the largest effect at a fixed
relative uncertainty of 10 per cent. The uncertainty in β leads to larger errors
with increasing z. The uncertainty in α leads to bigger errors as the survey gets
deeper. This is as is to be expected. The functional form for the power-law has a
pivot mass atM500c = 6×1014 M⊙. An error in α leads to an increasing bias in the
scaling relation when the masses differ more from the pivot mass. The amplitude
Y∗ leads to a similar level of uncertainty of about 5 to 10 per cent for each survey,
slightly decreasing for the deeper surveys.

Going panel-by-panel, it is clear that a 10% uncertainty in the fitting param-
eter only leads to an uncertainty in the cluster counts that is within the Poisson
error bars for the Planck-like survey. For the SPT and SO mocks, a higher ac-
curacy is needed for each of the three parameters. The constraints by Planck
Collaboration et al. (2016a) on the parameter β have a much larger uncertainty
(75%) than the 10% shown in this figure. Furthermore, a 10% deviation from
the best fitting value found for FLAMINGO is still inconsistent with self-similar
evolution. This implies that assuming the evolution is self-similar might lead
to significant biases. As the deeper surveys also probe higher z, it is important
that the redshift evolution is captured correctly. Additionally, for deeper surveys
the pivot mass should be moved to lower masses to reduce the error due to the
uncertainty in α. At the current pivot, an error in α of less than a per cent is
required to keep the results within the SO Poisson error bars. For the SPT mock,
we see that the constraints used by Bocquet et al. (2024) are not tight enough to
push the uncertainties below the level of the Poisson errors. It is important to
note that these parameters and their uncertainties are marginalised over when
inferring cosmology and that the uncertainties on these parameters will factor
into the uncertainty in the cosmology. Our results highlight the importance of
fully understanding the selection effects when constraining the scaling relations,
as small errors can lead to large biases in the inferred cosmology.
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Table 4.2: Compilation of the level of agreement between the cluster number counts predicted using the various assumptions
tested in this work and those predicted by the fiducial model, which uses the L1_m9 observable mass scaling relation and
the L5p6_m10_DMO HMF. Note that in each case the cosmology is fixed to the true one. The first column indicates the four
different types of assumptions tested, the second column specifies which model was used for that type of assumption. The
final six columns give the χ2 and the p-value for the hypothesis that the model is consistent with the mock survey, split by the
three mock surveys. Every time an assumption leads to a discrepancy that has a p-value lower than 0.2, it is shown in boldface.
Entries with a higher value lead to systematics that are consistent within the Poisson errors.

Assumption Model Planck χ2 Planck p SPT χ2 SPT p SO χ2 SO p
DMO HMF Tinker (2010) 50.7 < 10−6 107.1 < 10−6 1790.7 < 10−6

Bocquet (2016) 10.7 1.54× 10−1 2.9 1.00× 100 68.9 < 10−6

MiraTitanEmulator 36.0 7.38× 10−06 64.4 < 10−6 712.5 < 10−6

Baryon effect on the HMF L1_m9 4.2 7.56× 10−1 2.1 1.00× 100 22.4 2.14× 10−1
fgas+2σ 11.5 1.18× 10−1 3.3 1.00× 100 5.9 9.97× 10−1
fgas−2σ 1.7 9.75× 10−1 2.4 1.00× 100 96.7 < 10−6

fgas−4σ 1.1 9.93× 10−1 3.4 1.00× 100 226.9 < 10−6

fgas−8σ 0.4 1.00× 100 9.2 8.68× 10−1 563.1 < 10−6

Jet 1.3 9.88× 10−1 2.6 1.00× 100 80.0 < 10−6

Jet_fgas−4σ 0.4 1.00× 100 6.2 9.77× 10−1 404.0 < 10−6

Scaling relation fit LN 14.5 4.29× 10−02 2.5 1.00× 100 35.6 8.03× 10−03
PL 22.3 2.22× 10−03 1.9 1.00× 100 20.5 3.04× 10−1
LN+PL 49.1 < 10−6 13.5 5.66× 10−1 127.6 < 10−6

LN+PL+B16 33.2 2.44× 10−05 23.2 7.97× 10−02 412.9 < 10−6

Scaling relation variations fgas+2σ 4.3 7.48× 10−1 2.6 1.00× 100 4.0 1.00× 100
fgas−2σ 2.6 9.18× 10−1 0.9 1.00× 100 31.3 2.69× 10−02
fgas−4σ 2.9 8.90× 10−1 2.1 1.00× 100 156.3 < 10−6

fgas−8σ 20.8 4.00× 10−03 11.7 6.99× 10−1 762.6 < 10−6

Jet 2.3 9.41× 10−1 7.8 9.32× 10−1 191.4 < 10−6

Jet_fgas−4σ 16.9 1.81× 10−02 12.3 6.59× 10−1 462.3 < 10−6
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4.3.4 Systematic uncertainty in the observable-mass scaling relation

In the previous section we have investigated the impact of assuming a power-
law with lognormal scatter on the cluster counts and quantified how tightly the
parameters of the power-law need to be constrained to get unbiased results. In
this section we investigate the effect of changes to the scaling relation itself. To do
this, we make use of the FLAMINGO variations. Similar to previous figures, we
show both the change in the varied relation and the resulting effect on the cluster
counts in Fig. 4.6.

In the left panel of Fig. 4.6, we show the ratio between the Y500c−M500c scaling
relation of each of the simulation variations, and the scaling relation from the
L1_m9 simulation used for our fiducial model at z = 0. The right panels shows
the impact of these deviations from the fiducial model on the cluster counts for
our three mock surveys, indicated by the different line-styles. The black lines
show the fiducial model, including Poisson errors.

At z = 0, and for masses included in all samples (the mass limit is indicated
by the vertical grey line in the left panel), the changes in the scaling relations
mostly fall within the 10% region, but the deviations become much larger at
lower masses. All models are similar for the largest objects. This is as expected,
since AGN feedback is unable to offset the inflow of gas in the most massive
haloes. Towards lower masses the different variations diverge, with models with
higher gas fractions having a higher integrated Compton-Y at fixed mass. There
is an offset between the thermal and ’Jet’ models at fixed gas fractions, indicating
that the feedback model changes the resulting scaling relation’s dependence on
gas fraction.

Looking at the right panel of Fig. 4.6, the quantitative difference due to chang-
ing the scaling relation is similar to what was found for the baryon effect on the
HMF. For Planck most models are quite close to the Poisson error bars, and at
high z they are likely affected by noise as they do not deviate systematically. For
SPT, A large fraction of the models falls within the Poisson error bars. Only the
models with the lowest gas fractions deviate significantly, especially for z ≈ 0.75.
It is only for the SO-like mock survey that almost every variation leads to a signif-
icant difference. Only the fgas+2σ model agrees with the fiducial model within
the Poisson error bars.
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Figure 4.7: A compilation of all the cluster count comparisons in this work.
Each panel shows the ratio between the cluster number counts predicted by a
model making the indicated assumption and those predicted by and our fiducial
model, which uses the L1_m9 mass-observable scaling relation and scatter, and
the L5p6_m10_DMOHMF. The different model assumptions are indicated by the
different coloured lines. The Poisson uncertainty is given by the grey shaded re-
gion. The three columns show the results for the three mock surveys considered
in this work, from left to right, Planck, SPT and SO. The first row varies themodel
for the HMF, the second row varies the baryonic modification of the DMO HMF,
the third row investigates different fits to the observable-mas relation predicted
by the fiducial model and the fourth row varies the simulation from which the
mass-observable scaling relation and scatter is taken. In the third row the abbre-
viations are lognormal (LN), power-law (LN) and using the HMF model by Boc-
quet et al. (2016) (B16). The biggest systematic errors for all surveys are caused
by the HMF models, however, for the SO-like survey, nearly all assumptions lead
to a significant errors.

Assuming that deviations from the models used for cluster cosmology are
as small as for our mildest feedback variations, it seems that for previous and
current generation surveys the difference is still small enough for the effect to
be within the Poisson error bars. However, for future surveys, the necessity of
constraining the scaling relation more tightly is clear.

4.3.5 Quantifying the biases in the number counts

In this section we will investigate and compare the effects on the cluster number
counts of the different assumptions that we investigated for the three different
mock surveys. This way we can get a good overview for all the assumptions that
might lead to biases in the inferred cosmology.

In Table 4.2 we compile the effect of each assumption in terms of χ2 and the
p-value with respect to our fiducial model, which consists of the observable-mass
scaling relation from the L1_m9 simulation with the L5p6_m10_DMO HMF. To
highlight the problematic cases, all deviations that have a p-value below 0.2 are
highlighted using boldface. Like in the previous sections, the different assump-
tions are divided into four categories: the DMO HMF model, baryonic effects on
the HMF, assumptions made when fitting the observable-mass scaling relation
and variations in the scaling relation itself. Additionally, we summarise all the
findings so far in Fig. 4.7. This figure combines the right panels of Figs 4.2, 4.3,
4.4 and 4.6, but instead shows the ratio of the cluster number counts with respect
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to our fiducial model. The three mock surveys are shown in the three columns
with their Poisson errors shown as the grey shaded region.
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Figure 4.8: Posteriors from fitting the "Full" fitting model for cluster counts,
which assumes a power-law mass-observable scaling relation with lognormal
scatter and the DMO HMF model from Bocquet et al. (2016), to the cluster count
predictions for four different mocks setups at the Simons observatory detection
limit: Our fiducial mock survey ("Fiducial"; L1_m9 observable-mass scaling re-
lation and scatter and a L5p6_m10_DMO HMF), a mock survey that includes
the baryonic modification of the HMF ("Baryonic HMF"; as the Fiducial model
but with the baryonic modification of the HMF predicted by L1_m9), a setup
that uses an alternative model for AGN feedback that employs kinetic jets in-
stead of thermally-driven winds ("Jet"; the mass-observable scaling relation, scat-
ter and baryonic modification of the HMF are taken from the Jet simulation) and a
setup that uses the simulationwith the strongest reduction in cluster gas fractions
("fgas-8σ "; the mass-observable scaling relation, scatter and baryonic modifica-
tion of the HMF are taken from the fgas-8σ simulation). We fit for the cosmolog-
ical parameters Ωm and σ8, the two power-law observable-mass scaling relation
parameters Y ∗ and α (see Eq. 4.5), and the lognormal scatter around this relation
σ . The horizontal and vertical grey dashed lines show the true values. In the di-
agonal panels for the parameters Y ∗, α and σ , we also show the priors using grey
dashed lines. The two contour levels show the 68th and 95th percentiles. There
are significant biases in the cosmological parameters for all mocks.

By focusing on the boldfaced entries in Table 4.2, we get a clear overview of
the findings that we reported earlier in this work. There are a few groups of
problematic assumptions to highlight. One of these groups is found for some of
the results for the Planck-like survey. As explained earlier, these deviations are
mostly due to the limited (1 Gpc)3 volume used for this work, which leads to
additional noise for the cluster masses found by the Planck-like survey.

The second group consists of the DMO HMF models, which all lead to signif-
icant biases for all surveys, with the one exception being the model by Bocquet
et al. (2016) for the SPT-like survey. This can also be seen in Fig. 4.7. In all
other cases the models fall outside the error bars for most of the redshift range.
For the SO-like survey the requirements are particularly stringent. The model
by Bocquet et al. (2016) agrees very well for a large part of the redshift range,
but outside of that range the deviations quickly become so large that it leads to a
p-value that indicates a high level of disagreement.

Finally, nearly the entire SO column is boldfaced. None of the DMO HMF
models are accurate enough. All FLAMINGO variations but the ones with the
weakest feedback have enough of an effect on the HMF and scaling relation to
lead to significant differences. The assumption of lognormal scatter on the mass-
observable scaling relation, especially in combination with the assumption that
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the scaling relation is a power-law and the previously mentioned inaccuracies
of the DMO HMF model assumptions, lead to large deviations. From Fig. 4.7
it is clear that for the baryonic variations, the effects on the HMF and on the
observable–mass scaling relation are insensitive to redshift, leading to systematic
offsets across the entire redshift range. For the lognormal scatter and power-law
assumptions, the discrepancies are greatest at z > 1. These findings highlight the
point that for future surveys our current models use assumptions that are too
restrictive.

Our findings are in line with those of Bocquet et al. (2016), who also find that
post-SPT like surveys need to take baryonic corrections into account, and that we
need to be careful in constructing the HMFmodels as different current models in
the literature will lead to the inference of significantly different cosmologies.

4.3.6 Biases in cosmological parameters

As a final test we want to quantify the impact of the assumptions that are com-
monly made in models predicting cluster counts on inferred cosmological pa-
rameters for SPT- and SO-like surveys. We exclude the Planck-like survey from
this section as we found previously that the systematics are limited by our finite
simulation volume.

To fit mock survey data, we make use of the "full" model, LN+PL+B16,
which assumes the DMO HMF model from Bocquet et al. (2016), the power-
law observable-mass scaling relation given by Eq. 4.5 with lognormal scatter.
We fit for five parameters: the cosmological parameters Ωm and σ8, the
power-law observable-mass scaling relation parameters Y∗ and α, and the
lognormal scatter in the scaling relation σ . For the cosmological param-
eters we use the flat priors given by the limits of the MiraTitanEmulator
[Ωm = U (0.259,0.334),σ8 = U (0.7,0.9)]. For the power-law and scatter pa-
rameters we use Gaussian priors taken from Planck Collaboration et al.
(2016a) centered on the values that best fit our fiducial simulation L1_m9
[log10Y∗ = N (−0.098,0.02),α = N (1.66,0.08),σ = N (0.081,0.01)]. We keep the
redshift scaling β and the hydrostatic bias b fixed [β = 89,b = 0.0743]. See also
Table 4.1.

Besides our full fitting model, we use another fitting model, referred to as
"HMF", that also assumes the DMO HMF from Bocquet et al. (2016), but uses
the actual L1_m9 observable-mass scaling relation and scatter, rather than the
power-law fit with lognormal scatter used for the full model. This model will aid
in separating the errors induced by the use of the DMOHMFmodel from Bocquet
et al. (2016) from the errors induced by the assumption of a power-law scaling
relation with lognormal scatter. In the HMF case we only fit for the cosmological
parameters Ωm and σ8.
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For each type of survey (SPT- or SO-like), we use four different mock survey
setups to quantify the effect of biases in the fitting models. The first setup uses
the L1_m9 scaling relation and scatter (rather than a power-law fit and lognormal
scatter) and the L5p6_m10_DMO HMF. This mock is fit using both the HMF and
full models. As this mock setup and the fitting models both use a DMO HMF,
these two fits help us quantify errors due to the choice of DMO HMF model, and
errors due to the assumption of a power-law observable-mass scaling relation
with lognormal scatter.

The second mock setup, referred to as "baryonic HMF", again uses the L1_m9
scaling relation and scatter and the L5p6_m10_DMO HMF, but we modify the
DMO HMF by the baryonic effect predicted by the L1_m9 simulation, which we
fit using the full fitting model (LN+PL+B16). This way we can quantify the level
of bias introduced by baryonic effects on the HMF not being taken into account
by the fitting model.

The final two mock setups, which we fit using the full fitting model, use
the L5p6_m10_DMO HMF, but the observable-mass scaling relation, scatter and
baryonic modification of the HMF are taken from either the Jet or fgas-8σ simu-
lations. These last two mocks can inform us about the impact of inconsistencies
between the priors in the observable-mass scaling relation, which are centered
on the predictions from L1_m9, and reality (assumed to be either the Jet or fgas-
8σ predictions). In the case of the Jet model these inconsistencies are due to a
change in the prescription for AGN feedback at fixed cluster gas fractions, while
for fgas-8σ they are due to a large reduction in the gas fractions. This yields ten
fits in total, five each for the SPT- and SO-like surveys.

The results are shown in Table 4.3. The full model can only reach the level of
accuracy necessary to improve on the Planck Collaboration et al. (2020a) errors
(i.e. about 2% in Ωm and 1% in σ8) for the Fiducial mock setup for the SPT-like
survey. The agreement is worst for the Jet and fgas−8σ mock setups. For the SO
mocks the fractional systematic errors are generally reduced with respect to the
SPTmocks, but, because of the increased precision reached by the SO-like survey,
the biases are more more significant, i.e. the errors correspond to a larger number
of σ .

Interestingly, for the SO survey the biases are less significant for the bary-
onic HMF mock setup than for the Fiducial setup. As the full fitting model does
not take baryonic effects on the DMO HMF into account, this implies that unac-
counted for systematic errors are compensating each other. For all fits using the
full model the number of σ is close to or exceeds unity, signaling that all models
tested suffer from significant systematics. Comparing the biases for the full and
HMF fitting models, it is clear that the DMOHMFmodel drives part of the errors
for both surveys. For the SPT survey about half of the fractional error in Ωm and
a quarter of the fractional error in σ8 are caused by the DMO HMF model. For
SO it accounts for most of the Ωm error and about half of the σ8 error.
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The posteriors for the SO-like model fits are shown in Fig. 4.8. Focusing first
on the power-law and scatter parameters, it is clear that they are all mostly prior
driven. When using broad flat priors, the posteriors for the power-law and scat-
ter parameters posteriors extend far beyond realistic ranges. The posteriors are
somewhat tighter than the priors, indicated by the dashed grey lines in the diag-
onal panels, but the differences are small. There are some degeneracies between
the power-law and cosmological parameters. Such degeneracies can lead to bi-
ases. This can be seen for α, which is biased slightly low due to its degeneracy
with σ8. This illustrates the importance of priors, i.e. independent constraints on
the scaling relation parameters, in order to reduce the biases that can be incurred
due to movement along the lines of degeneracy. It is also clear from the fits to
the Jet and fgas-8σ mocks that changes in the observable-mass scaling relation
are not picked up by the fitting. The prior is so dominant that any differences
between the prior scaling relation and the truth will manifest itself in a change
in cosmological parameters. Relaxing the priors might aid in relative consistency,
but this would also degrade the cosmological constraining power.

Clearly, improvements are needed to the modelling of both baryonic effects
and the DMO HMF. With current models, the fractional systematic errors exceed
the current Planck constraints. Without improvements on the modelling side, we
will not be able to use cluster counts to make any definite statements about for
example the σ8 tension.

4.4 Conclusions

Galaxy cluster counts have the potential to provide an alternative avenue to ex-
plore cosmological tensions between the cosmological parameters measured by
different types of observables. For cluster surveys, selection based on the ampli-
tude of the thermal Sunyaev-Zel’dovich (SZ) effect, i.e. the Compton-Y parameter,
is predicted to result in smaller biases relatively to a mass-selected sample com-
pared with e.g. X-ray selection (e.g. Kugel et al., 2024). The number of objects
detected in SZ is rapidly increasing (Planck Collaboration et al., 2016a; Hilton
et al., 2018; Bocquet et al., 2019, 2024) and future observatories are predicted to
dramatically increase our sample size (e.g. Ade et al., 2019). To exploit the statis-
tical power of these surveys, any biases in the predictions of the models must be
small compared with the statistical errors.

In the light of these advances we investigated some of the assumptions that
go into the models used to measure cosmological parameters using galaxy clus-
ter samples, particularly those from SZ surveys. These models need to assume a
model for the halo mass function (HMF), which is typically based on a framework
built on dark matter only (DMO) simulations, which is conventionally combined
with a power-law mass-observable scaling relation with lognormal scatter. We
aim to investigate whether these model ingredients, in particular the choice of
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Table 4.3: The fractional and number of σ (relative to Poisson) systematic error
(see Section 4.2.4) in the cosmological parameters Ωm and σ8 when fitting dif-
ferent models to the cluster counts predicted by the different mock setups for
SPT- and SO-like mock surveys. The first column lists the survey from which
the selection limit and sky area are taken, either SPT or SO. The second column
lists the model that is fit to the mock data. "HMF" uses the true observable-mass
scaling relation and scatter from the fiducial simulation (L1_m9) and the DMO
HMF from Bocquet et al. (2016). For this fitting model the only free parameters
are Ωm and σ8. "Full" also uses the B16 DMO HMF, but assumes a power-law
(2 free parameters) plus lognormal scatter (1 free parameter) scaling relation.
The third column lists the setup of the mock surveys that the models are fit to.
"Fiducial" stands for the true L1_m9 scaling relation and scatter combined with
the L5p6_m10_DMOHMF. "Baryonic HMF" uses the Fiducial setup but modifies
the DMO HMF with the baryon response predicted by L1_m9. The Jet and fgas-
8σ setups use the scaling relation, scatter and baryonic modification of the HMF
from their respective simulation, with the L5p6_m10_DMOHMF. The fourth and
fifth columns list the per cent error in the median of the cosmological parameters
obtained from the fits. The final column shows the number of sigma the Ωm-σ8
posterior medians are away from the truth, taking into account degeneracies be-
tween the parameters.

Survey Fit model Mock setup Ωm [%] σ8 [%] Nσ
SPT HMF Fiducial 1.8 0.7 0.40
SPT Full Fiducial 3.8 3.2 1.38
SPT Full Baryonic HMF 7.6 5.6 1.36
SPT Full Jet 9.3 1.7 0.96
SPT Full fgas-8σ 17.3 10.6 1.12
SO HMF Fiducial 2.3 0.7 1.51
SO Full Fiducial 2.1 1.6 1.74
SO Full Baryonic HMF 1.3 1.5 1.43
SO Full Jet 2.6 3.1 3.17
SO Full fgas-8σ 7.5 2.8 3.54
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DMO HMF model, the assumptions of a power-law scaling relation with lognor-
mal scatter, and the uncertainties in baryonic effects on the HMF and on the
scaling relation, lead to a biased cosmological inference.

Wemake use of the FLAMINGO suite of hydrodynamical simulations (Schaye
et al., 2023; Kugel et al., 2023). With its large box sizes (at least 1 Gpc on a side)
and many variations spanning the uncertainties in the strength of feedback pro-
cesses constrained by observations of the galaxy mass function and cluster gas
fractions, it provides an ideal laboratory to compare cluster count models with.
The FLAMINGO simulations self-consistently predict the observables needed for
cluster counts, in our case the Compton-Y parameter. We take the predictions of
a FLAMINGO simulation as the baseline truth, and test the validity and implica-
tions of the different assumptions that go into the theoretical models for cluster
counts that are used to measure cosmological parameters from observed cluster
counts. We construct three mock surveys based on the number of objects in the
Planck (Planck Collaboration et al., 2016a), SPT (Bocquet et al., 2024) and fu-
ture Simons observatory (Ade et al., 2019) SZ surveys. Since we are focused on
uncertainties on the modelling side, we to not create virtual observations and as-
sume pure Poisson errors based on the depth and area of the survey. To identify
potential biases, we compare the systematic deviations to the Poisson errors of
each survey. We summarise our main results in Fig. 4.7 and Table 4.2. Our main
results are:

• There are large and highly significant deviations between the predictions
of widely used DMO HMF models. The models differ both from each other
and from the (5.6 Gpc)3 DMO FLAMINGO simulation (see Fig. 4.2). For all
three mock surveys, the results from Tinker et al. (2010) and the MiraTi-
tanEmulator (Bocquet et al., 2024) fall outside the Poisson error bars. The
model from Bocquet et al. (2016) performs least badly, but it still diverges
from FLAMINGO at the high mass end, leading to disagreement for the
Planck-like sample, and it is not accurate enough for the SO-like sample.

• The effect of baryons on the HMF will need to be accounted for. This is
particularly important for an SO-like survey (see Fig. 4.3), for which even
some of our weaker feedback variations lead to deviations that exceed the
Poisson errors.

• The assumption of a power-law with lognormal scatter does not lead to
large systematic errors, at least not for surveys that are only sensitive to
masses M500c > 2× 1014 ⊙ (see Fig. 4.4). For deeper surveys a single power-
law is likely inadequate. For the Planck- and SPT-like samples, the system-
atic errors due to these assumptions are smaller than Poisson. For the SO-
like sample, the assumption of a constant lognormal scatter leads to signif-
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icant deviations, which become worse when combined with the power-law
assumption.

• Ten per cent uncertainties on the power-law parameters of the observable-
mass scaling relation are only good enough for the Planck-like survey (see
Fig. 4.5). For SPT and particularly for SO, (much) tighter constraints are
required to push the systematic deviations below the Poisson errors. For
these surveys current constraints on the scaling relation are insufficiently
tight to reduce the systematic deviation below the Poisson errors.

• The effect of changing the scaling relation is similar in magnitude to that of
the baryonic modification of the HMF (see Fig. 4.6). For Planck- and SPT-
like surveys, only the most extreme models fall outside the Poisson errors.
However, for the SO-like sample the differences are large with respect to
the Poisson errors. As the changes in the scaling relation due to residual
uncertainties in the observationally-constrained galaxy formation physics
are at the 10 per cent level, this further reinforces the fact that improving
constraints on the observable-mass scaling relation is necessary to ensure
the cosmology inference remains unbiased.

• Comparing all the results (see Fig. 4.7 and Table 4.2), we find that the
largest source of systematic error on the number counts is the DMO HMF
modelling, which leads to a significant bias for each survey. Additionally,
for future surveys, improvements will be needed across all the modelling
ingredients, for example by introducing a mass- and redshift-dependent
scatter and by obtaining better external constraints on the mass-observable
relations and the effects of baryons on the HMF.

• When fitting cluster counts with amodel assuming a power-law observable-
mass scaling relation with lognormal scatter, with Gaussian priors taken
from Planck Collaboration et al. (2016a) but centered on the values that
best fit our fiducial simulation L1_m9, and the DMO HMF from Bocquet
et al. (2016), we find significant errors in the cosmological parameters for
all mock surveys (see Fig. 4.8 and Table 4.3). Because cluster counts on
their own do not constrain the power-law parameters, any systematic de-
viations in the prior on the scaling relation lead directly to biases in the
cosmological parameters. At the current level of model accuracy, the sys-
tematic errors are so large that cluster counts cannot be used to shed light
on the σ8 tension.

We have used the FLAMINGO simulations to highlight some of the short-
comings of current cluster count cosmology models. In particular, the large de-
viations caused by the assumed theoretical DMO HMF models will need to be
addressed as they could lead to large biases even for current surveys. Although
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we found that the Bocquet et al. (2016) HMF gives better agreement than popular
alternatives, this may be largely coincidental given that we use a different halo
finder and that the overestimate of the abundance for masses near the selection
limit compensates the strong underestimate for high masses (see Fig. 4.2). The
divergence between different models for the HMF at high mass suggests that the
abundance of these objects might simply be too sensitive to systematic effects,
including simulation volume, halo finder and the mass-concentration relation, to
give reliable cosmological constraints. Instead it might be favourable to use ob-
jects with a lower mass, something that will happen naturally with new surveys.
Improvements to the constraints on the observable-mass scaling relation and the
effect of baryons on the HMF will also be necessary for next generation surveys.

Two major steps that we have excluded from this work are the measurement
of the observable mass proxy and the selection of clusters based on such mea-
surements. Forward modelling using virtual observations would allow including
these steps. This would enable application of full multi-frequency SZ selection
methods (Melin et al., 2006, 2012; Hilton et al., 2018) to the FLAMINGO light-
cones, including foregrounds and noise specific to each survey. Systematic errors
in the calibration of the observable-mass relation using e.g. gravitational lensing
could also be modelled using virtual observations.

Another avenue worth exploring, is to abandon the classical HMF based on
the spherical overdensity definition of dark matter haloes. Instead, we can pre-
dict the abundance of clusters as a function of the observable (e.g. Debackere
et al., 2022a). This approach can reduce baryonic uncertainties (e.g. Debackere
et al., 2022b) and is well-suited to emulation. Indeed, given that emulators have
already replaced (semi-)analytic models for the DMO HMF, this would be a nat-
ural next step. Emulators based on hydrodynamic simulations can directly pre-
dict cluster counts as a function of observables such as the limiting Compton-
Y parameter and the cosmological parameters. Moreover, they can be used to
marginalize over the uncertainties in the baryon physics and to constrain such
variations using external data.
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Data Availability
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Abstract

This study concerns an inventory of the gravitational force and tidal field
induced by filaments, walls, cluster nodes and voids on Megaparsec scales
and how they assemble and shape the Cosmic Web. The study is based on a
NPart = 5123 ΛCDM dark matter only N-body simulation in a (300h−1 Mpc)3

box at z = 0. We invoke the density field NEXUS+ multiscale morphological
procedure to assign the appropriate morphological feature to each location.
We then determine the contribution by each of the cosmic web components to
the local gravitational and tidal forces. We find that filaments are, by far, the
dominant dynamical component in the interior of filaments, in themajority of
underdense void regions and in all wall regions. The gravitational influence
of cluster nodes is limited, and they are only dominant in their immediate
vicinity. The force field induced by voids is marked by divergent outflow-
ing patterns, yielding the impression of a segmented volume in which voids
push matter towards their boundaries. Voids manifest themselves strongly
in the tidal field as a cellular tapestry that is closely linked to the multiscale
cosmic web. However, even within the interior of voids, the dynamical influ-
ence of the surrounding filaments is stronger than the outward push by voids.
Therefore, the dynamics of voids cannot be understood without taking into
account the influence of the environment. We conclude that filaments consti-
tute the overpowering gravitational agent of the cosmic web, while voids are
responsible for the cosmic web’s spatial organisation and hence of its spatial
connectivity.

5.1 Introduction

This study concerns a systematic inventory of the gravitational force and tidal
field on Megaparsec scales and its role in determining the structure of the Cos-
mic Web. We assess the force field and tidal field induced by filaments, walls,
cluster nodes and voids, and assess in how far they contribute, and dominate,
the gravity and tides in the various regions of the cosmic web. It allows us to
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Figure 5.1: Gravitational force field in and near a void. Left: the force vectors
representing the local direction and amplitude of the total gravitational force,
ie. the force exerted by the total cosmic mass distribution. Right: the local force
vectors resulting from the combined influence of mass elements in void regions.
The vector lengths are normalised with respect to the local total velocity and
show the relative contribution of the field at that location.

investigate the question which morphological features in the large scale universe
dominate - and drive - the gravitationally driven formation and evolution of the
largest structure in the universe. Also, as this will depend to a considerable ex-
tent on location, we include a systematic inventory of the identity of the regions
over which voids, filaments and clusters dominate the the gravitational and tidal
force. In an accompanying study, we specifically focus on the dynamical influ-
ence of cosmic voids in the large scale matter distribution, which represent the
major share of the cosmic volume and who - along with filaments - dominate the
dynamics of the large scale Universe.

5.1.1 The Cosmic Web: structure and detection

The Cosmic Web is the intricate multiscale network defined by the matter and
galaxy distribution on Megaparsec scale (Zeldovich, 1970; Einasto, 1977; Bond
et al., 1996; van de Weygaert & Bond, 2008a; Cautun et al., 2014). It represents
the fundamental spatial organisation of matter on scales of a few up to a hundred
Megaparsec. Galaxies, intergalactic gas and dark matter arrange themselves in a
salient wispy pattern of dense compact clusters, long elongated filaments, and
sheetlike tenuous walls surrounding near-empty void regions. Filaments are the
most visually outstanding features of the Megaparsec Universe, in which around
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50% of the mass and galaxies in the Universe resides. On the other hand, al-
most 80% of the cosmic volume belongs to the interior of voids (see e.g. Cautun
et al., 2014; Ganeshaiah Veena et al., 2018). Together, they define a complex spa-
tial pattern of intricately connected structures, displaying a rich geometry with
multiple morphologies and shapes. This complexity is considerably enhanced
by its intrinsic multiscale nature, including objects over a considerable range of
spatial scales and densities. The connectivity of this rich pallet of features, the
nature of how the various structures connect to establish the pervasive network,
has only recently been recognised as an important defining - topological - aspect
(Aragón-Calvo et al., 2010; Shim et al., 2021; Wilding et al., 2021; Feldbrugge &
van de Weygaert, 2023). For a recent up-to-date report on a wide range of rele-
vant aspects of the cosmic web, we refer to the volume by van de Weygaert et al.
(2014).

In the observational reality, the existence and structure of the CosmicWeb has
been revealed in the most detail by maps of the nearby cosmos produced by large
galaxy redshift surveys. Starting from first revelation of the web-like arrange-
ment of galaxies by the CfA2 survey (e.g. de Lapparent et al., 1986), subsequent
surveys such as 2dFGRS, the SDSS, the 2MASS and GAMA redshift surveys (Col-
less et al., 2003; Tegmark et al., 2004; Huchra et al., 2012; Liske et al., 2015)
established the web-like arrangement of galaxies as a fundamental characteristic
of cosmic structure. Maps of the galaxy distribution at larger cosmic depths, such
as VIPERS (de la Torre et al., 2013), showed its existence over a sizeable fraction
of cosmic time.

Also the intergalactic gaseous medium, closely follows the web-like struc-
ture defined by the dark matter, the principal component of the cosmic web. A
range of observational probes have detected the web-like structure over which
intergalactic gas, in a range of thermodynamic states (see Meiksin, 2009, for a
review), has diffused itself. Lyα absorption lines in the spectra of bright back-
ground sources such as QSOs are piercing through the web-like assembly of neu-
tral hydrogen gas in the cosmic web at high redshifts (Ostriker & Cen, 1996; Cen,
1997). The combination of sufficiently close linear probes even allows a recon-
struction of the full three-dimensional intergalactic hydrogen lanes (Pichon &
Bernardeau, 1999).

It has already led the Clamato survey (Lee et al., 2018) to successfully pro-
duce fascinating maps of the full three-dimensional gaseous cosmic web at high
redshifts. Recent observations by the MUSE integral field unit on the very large
telescope, even managed to see the Lyα emission from the filamentary gaseous
extensions around clusters directly. At lower redshifts, most of the intergalactic
gas has heated up as it settled in the deepening potential wells of the dark matter
cosmic web. This warm gas, the so called WHIM, is assumed to represent the
major share of baryons in the current Universe. As such is a prime target for
detection and mapping (Nicastro et al., 2018; Macquart et al., 2020), although it
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Figure 5.2: Flows of matter in the cosmic web. Superimposed on the (logarith-
mic) map of the cosmic density field in a slice of the simulation box are the
streamlines of the corresponding cosmic velocity field. Arrows indicate three
different aspects of the flow field: The red arrow highlights velocity inflow into a
cluster node (negative divergence), the orange arrow highlights velocity outflow
from a void (positive divergence) and the blue arrow highlights shear flow along
a filament.
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Figure 5.3: Cosmic web and tidal force field: the relation between the cosmic
web and the spatial pattern of the corresponding compressional tidal field com-
ponents. The image shows an LCDM matter distribution at the present cosmic
epoch, along with the (compressional component) tidal bars in a a 5h−1 Mpc
thin central slice. The simulation is a realization of a dark matter only CDM
based scenario (in an open, Ω = 0.3 Universe. The tides are determined on a
scale RG = 2h−1 Mpc). The matter distribution, displaying a pronounced weblike
geometry, is clearly intimately linked with the characteristic coherent compres-
sional tidal bar pattern.

had proven to be notoriously hard to detect. It has been more straightforward
to detect the hot gas residing in the strongest filamentary features in the cosmic
web at high redshifts, filling the short dense bridges between two adjacent clus-
ters. The hot gas reveals itself through the Sunyaev-Zeldovich upscattering of
CMB photons. It has even allowed the detection of a few individual high-redshift
gaseous filaments, where their ubiquitous presence has been revealed by stack-
ing numerous cluster pair Sunyaev-Zeldovich observations (Bonjean et al., 2018;
de Graaff et al., 2019).
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5.1.2 The Cosmic Web: dynamics, formation and evolution

The origin of the cosmic web is to be found in the tiny inhomogeneities in the
primordial spatial matter distribution. These induce an inhomogeneous and
anisotropic gravitational force field. It sets off the migration of matter, culmi-
nating in the continuous growth of density and velocity inhomogeneities (Pee-
bles, 1980). Ultimately, as the matter fluctuations become nonlinear, it leads to
the contraction and collapse of structures and expansion of underdense regions.
At the transition from the initial long phase of linear growth of the primordial
(Gaussian) density field and density field to the complex structured nonlinear
mass distribution, we find the emergence of the intriguing and complex spatial
pattern of the Cosmic Web. It marks the cosmic web as a key phase in the dynam-
ical buildup of structure in the Universe.

A plethora of cosmological computer simulations (White et al., 1987;
Springel, 2005; Pillepich et al., 2018; Bocquet et al., 2020; Angulo et al.,
2021), including more elaborate cosmological hydrodynamics simulations (e.g.
Hirschmann et al., 2014; Schaye et al., 2015; McCarthy et al., 2017; Pillepich
et al., 2018; Schaye et al., 2023) revealed that through gravitationally driven
evolution the Gaussian initial density and velocity perturbations morph into an
intricate web-like pattern that resembles that seen in the spatial distribution of
galaxies. The simulations show that the cosmic web is a fundamental aspect of
structure formation in the standard ΛCDM cosmology, although this also turns
out to be true for variations around the standard ΛCDM model (for a review see
Frieman et al., 2008).

Within the context of the gravitational buildup of the cosmic web, the grav-
itational forces induced by the inhomogeneous mass distribution are the agent
for the buildup of structure. They are instrumental in directing the cosmic mi-
gration streams that transport matter from low density areas to emerging matter
concentrations. The accompanying tidal force field is the key towards shaping
the mass distribution into a weblike pattern. This had already been recognized
and accurately described in the mildly nonlinear stage by the Zel’dovich formal-
ism (Zeldovich, 1970; Shandarin & Zeldovich, 1989). The formation and evolu-
tion of the characteristic anisotropic structures, ie. the filaments and walls, are
the product of the anisotropic tidal strains and resulting anisotropic flow field
and deformations (Bond et al., 1996; Hahn et al., 2007; van de Weygaert & Bond,
2008a; Lee et al., 2009; Lee & Springel, 2010; Hahn et al., 2010; Wang et al., 2014;
Feldbrugge et al., 2018a; Feldbrugge & van de Weygaert, 2024). It establishes a
close relation between the weblike structures and the anisotropy of the induced
migration flows, which has been the focus of a few insightful studies (Kitaura
et al., 2012a; Hoffman et al., 2012; Wang et al., 2014). Recent work has also re-
vealed the extent to which the spatial structure of the tidal force field determines
the connections between the components of the cosmic web. The connectivity
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can even already be recognised in the primordial tidal and deformation field,
showing the extent towards which the primordial anisotropic force field is steer-
ing and shaping the structure of the emerging cosmic web (see eg. Wilding, 2022;
Feldbrugge et al., 2023; Feldbrugge & van de Weygaert, 2024). It even leads to
the realization that embryonic outline of the cosmic web, in particular its fila-
mentary network, can already be seen in the primordial tidal eigenvalue field
(Wilding, 2022; Feldbrugge et al., 2023) (see figure 5.3).

For insight into the nature and origin of the characteristic properties of the
cosmic web and for identifying the dependence of these on cosmology and cos-
mological parameters, theoretical understanding of the physical mechanisms and
processes behind the emergence of the cosmic web. Analytical approximation
and model have been essential in interpreting the results of surveys, as well as
of simulations (e.g. Zeldovich, 1970; Hidding et al., 2012; Wang et al., 2014;
Hidding et al., 2016; Feldbrugge et al., 2018a; Feldbrugge & van de Weygaert,
2024). An important aspect of the formation process are the forces and strains
that shaped cosmic structure. For example, the phase-space based Caustic Skele-
ton model by Feldbrugge et al. (2018a) demonstrated that a full understanding
of the cosmic web structure is obtained through the spatial characteristics of the
eigenvalue and eigenvector fields of the cosmic tidal force field. Motivated by these
consideration, the intention of the present investigation and inventory of the dy-
namics of the cosmic web is to establish the role of the various morphological
features of the cosmic web in its formation and dynamical evolution. It involves
the assessment of in how far the various elements of the cosmic web are formed
and have evolved, and how they connect up in the complex, intricate pervasive
network of the cosmic web.

While many structural aspects of the cosmic web have been addressed by nu-
merous studies, its dynamics and dynamical evolution has only been - superfi-
cially - explored within a purely theoretical or simulation context. Over recent
years, we have seen that the dynamics behind the formation and evolution of
the cosmic web is becoming increasingly accessible to observational investigation
(see eg. Kitaura et al., 2012b). The forces and tides that shape the complex spatial
pattern induce nonlinear migration currents, marked by distinct divergent and
shear-like flows, have recently been traced in new, densely probed, galaxy pecu-
liar velocity surveys. The most notable examples of this are the Cosmicflows-3
and Cosmicflows-4 (Tully et al., 2016; Kourkchi et al., 2020) surveys, a view that
will be considerably extended by DESI (Schlafly et al., 2023). Including the pecu-
liar velocity information even allowed to identify the impact of some individual
components of the cosmic web is also found in the local universe. This concerns
in particular the gravitational influence of voids: Tully et al. (2008) concluded
that the Local Void has a large contribution of no less than ∼ 240km/s to the
peculiar velocity of the Local Group.

Also the subtle morphing influence of the tidal forces has become suscepti-
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ble to observational scrutiny. The distinct anisotropic shape of the filaments and
walls in the cosmic web is the direct outcome of the gravitationally driven forma-
tion of the cosmic web by the large scale anisotropic force field (van de Weygaert
& Bond, 2008a). Even the population of voids on Megaparsec scales is noticeably
shaped and aligned by the large scale tidal force field (Park & Lee, 2007; Platen
et al., 2008).

Arguably the most prominent manifestation of the (tidal) anisotropic force
field induced by the inhomogeneous matter distribution in the Universe is that
of gravitational lensing. Hence, at a global level the tidal dynamics of the cos-
mic web is reflected in the corresponding deformation of galaxy images. In case
the distortions are linear, inversion allows the study of the generating (projected)
mass distribution. At present, gravitational lensing has become one of the most
powerful probes of the global Universe and the cosmological parameters char-
acterising it. With the availability of the upcoming powerful and accurate cos-
mological surveys, such as enabled by the Vera Rubin observatory and Euclid,
the tedious lensing studies may even resolve the web-like nature of dark matter
distribution. A few gravitational lensing studies have even already managed to
detect and resolve filamentary dark matter bridges between nearby massive clus-
ters (Dietrich et al., 2012). Amongst the most massive representatives amongst
the filament population (Cautun et al., 2014), they leave a rather accessible and
detectable lensing imprint.

Also at galaxy scales, the large scale tidal forces induce noticeable signatures
(see e.g. van de Weygaert & Babul, 1994; Paranjape, 2021; Alam et al., 2024).
Perhaps the most outstanding manifestation is that of the alignment of the spin
axis of collapsing dark matter halos with the filaments in which they are em-
bedded, and hence that of the corresponding rotation axis of galaxies. It is clear
from observations (see Jones et al., 2010; Tempel et al., 2013; Welker et al., 2020)
that the rotation axis of galaxies preferentially align with the components of the
cosmic web. Largely the result of the imparted tidal torques on the collapsing
halos (Hoyle, 1949; Peebles, 1969; Efstathiou & Jones, 1980; White, 1984; Lee &
Pen, 2000; Porciani et al., 2002a,b; Schäfer, 2009), additional secondary effects
responsible for the mass dependence of the spin orientation (Aragón-Calvo et al.,
2010; Hahn et al., 2007, 2010; Codis et al., 2012; Tempel et al., 2013; Ganeshaiah
Veena et al., 2018, 2019; López et al., 2021; Zhang et al., 2023) may be the result
of the induced filamentary inflow of mass (Ganeshaiah Veena et al., 2021). The
latter has become a key issue of attention, given the implications for gravitational
lensing studies.

5.1.3 Morphology of the Cosmic Web

While the cosmic web has four morphologically well defined features, there are
many ways to identify the different components. Over the past decades, a range
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of methods and formalisms have been put forward for the detection and classifi-
cation of filaments. A review and comparison of more than a dozen formalisms
can be found in Libeskind et al. (2018). They distinguish at least five classes
of formalisms to classify and analyse the cosmic web. Geometric filament find-
ers are usually based on the Hessian of the density or gravitational potential at
each location. It includes the Tweb and Vweb formalisms (Hahn et al., 2007;
Forero-Romero et al., 2009; Hoffman et al., 2012), which emphasize and exploit
the intimate link between the tidal foce field and induced anisotropic velocity
flows and the spatial structure and connectivity of the weblike pattern that is
emanating as a result of these. The most sophisticated ones explicitly take into
account the multiscale nature of the mass distribution, of which MMF/Nexus is
a particular example (Aragón-Calvo et al., 2010; Cautun et al., 2013). Topologi-
cal methods address the connections between structural singularities in the mass
distribution. They are amongst the most widely used formalisms in the studies
of the cosmic web, in particular, that of Disperse (Sousbie, 2011; Sousbie et al.,
2011). Other representatives are Spineweb (Aragón-Calvo et al., 2007a) and Felix
(Shivashankar et al., 2016).

In addition to the geometric and topological formalisms, several alternative
methods have played a substantial role in the study of the cosmic web. Bisous
is a well-known stochastic formalism, involving Bayesian exploration based on
stochastic geometric modelling of filaments (Tempel et al., 2014a). It forms the
basis for the widely used filament catalogue extracted from the SDSS survey
(Tempel et al., 2014b). More recent developments often incorporate machine
learning codes (see e.g. Awad et al., 2023). Perhaps the oldest representatives
for a systematic analysis of filamentary patterns are graph-based methods. The
Minimal Spanning Tree (MST) is a prime example and is figuring prominently
in the cosmic web analysis of the GAMA survey (Alpaslan et al., 2014). There
is even a class of cosmic web identifiers that exploit the resemblance of the cos-
mic web to biological branching networks. The Monte Carlo Physarum Machine,
inspired by the growth of Physarum polycephalum ’slime mold’, has been suc-
cessfully applied to the structural analysis of the cosmic web in both simulations
and observations (Elek et al., 2020, 2022; Wilde et al., 2023).

Possibly the most profound techniques for classification of the cosmic web are
those emanating from the analysis of the 6D phase-space structure of the cosmic
mass distribution (Shandarin, 2011; Shandarin et al., 2012; Neyrinck & Shan-
darin, 2012; Abel et al., 2012). Restricted to situations in which the initial condi-
tions are known, they yield the identification of the matter streams constituting
the migration of mass in the buildup of structure. It allows the definition of an
objective physical criterion for what constitutes the various structural elements
of the cosmic web. The recent study by Feldbrugge & van de Weygaert (2024) on
the phase-space based dynamical specification of the nature of cosmic filaments
emanates from a detailed phase-space based assessment of cosmic structure for-
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mation, within the context of the Caustic Skeleton model for the formation of the
cosmic web (Feldbrugge et al., 2018b).

The present study is based on the MMF/Nexus morphology classification for-
malism(Aragón-Calvo et al., 2007b,a, 2010; Cautun et al., 2013, 2014), that is
unique in addressing both the geometric nature as well as the multiscale nature
of the cosmic matter distribution. By means of the Hessian of the density field
NEXUS to find the geometric/morphological signature of the individual compo-
nents. Of particular interest for our purpose is the NEXUS+ flavour of NEXUS.
It applies log-space filtering to the density field before identification. Like shown
by Cautun et al. (2014) this allows NEXUS+ to find even the more tenuous ele-
ments of the cosmic web.

5.1.4 Cosmic Web Dynamical Inventory

The present study extends the previous cosmic web inventory of Cautun et al.
(2014) to that of the corresponding force and tidal field influence as a function of
cosmic web environment. The distinct structure of the morphological elements
of the cosmic web implies that each component will also be dynamically distinct,
both in its local dynamics, but also in the influence it will have on its surround-
ings through the force and tidal field. Bond et al. (1996) argue that the main
origin of filaments in the cosmic web is due to the distribution of nodes in the
cosmic web, and not much work has been done on the topic since. In this work
we aim to extend our knowledge about the dynamical influence and origin of the
cosmic web.

To quantify the dynamical influence, we analyse a ΛCDM (dark matter only)
simulation, and asses at each location in a cosmic volume the contribution by
filaments, walls, voids and nodes to the local gravitational and tidal force (see
eg. fig. 5.1 for the force field contribution by voids). This allows a statistical
inventory of the dynamical dominance of the various morphological elements of
the cosmic web. To this end we apply NEXUS+ to identify for each point in the
simulation whether it belongs to a filaments, wall, void or node. Using direct
summation over the gridcells, we are then able to construct the force and tidal
field originating from each component.

The obtained fields are full vector fields, for the force field, or matrix fields,
for the tidal field. This allows us to study both the morphology and the strength
of the fields belonging to each component. For each field we look at both the (rel-
ative) amplitude and the direction. In addition, the spatial coherence and pattern
of the induced flow field is studied on the basis of streamline maps (see fig. 5.2).
We are also able to zoom in on a few specific regions to study the interplay be-
tween the different components. In this way we are able to find where, and how
the different components contribute to the total force field. By looking at the
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tidal field we are also able assess which component is responsible for creating the
an-isotropic nature of the cosmic web (see fig. 5.3).

5.1.5 Outline

This paper is structured as follows. In section 5.2 we describe the simulation we
use, how we obtain the identification of the cosmic web components and how
we calculate the force and tidal fields. In section 5.4 we describe the force field
of the individual components for the complete (300Mpc)2 slice. In section 5.5
we investigate two smaller regions of the full slice, and look at the force fields
around a void and a node. In section 5.6 we describe our results for the tidal
field. We finish by summarising our conclusions in section 5.8.

5.2 Data and Analysis: N-body simulations

For the dynamical inventory of the cosmic web in the present study, we analyze
a LCDM dark matter only cosmological N-body simulation. The force and tidal
inventory in the present study largely pertains to the current cosmic epoch, red-
shift z = 0. The evolution of the force and tidal force fields will be analyzed in
an accompanying upcoming publication. In this section we describe the specific
methods and formalisms used to get to the inventory of the gravitational force
and tidal field within this simulation.

The simulation is processed and analyzed with a set of instruments that allow
the optimal identification of the multiscale structure and dynamics of the cosmic
web. These include the translation from the discrete set of particle position and
velocities towards continuous density and flow fields that optimally retains the
anisotropic pattern of the cosmic web as well as its multiscale structure. This
is accomplished through the use of the DTFE formalism (Schaap & van de Wey-
gaert, 2000; van de Weygaert & Schaap, 2009; Cautun & van de Weygaert, 2011).

Instrumental in our study is the classification and identification of the mor-
phological components of the cosmic web. The morphological identification and
classification of the geometric components of the cosmic web is based on the
use of the MMF/Nexus formalism, specifically that of NEXUS+ version of the
MMF/Nexus pipeline (Aragón-Calvo et al., 2007a; Cautun et al., 2013).

The second major aspect of our analysis concerns the calculation of the (pe-
culiar) gravity and tidal fields, globally as well specific for those induced by the
individual components of the cosmic web. The computational details are de-
scribed in section 5.3.1. To appreciate the spatial structure of the force and tidal
fields better, and to interpret the results obtained, in section 5.3.1 we include a
description of the various aspects of visualisation of these fields.

The necessary details of the Nbody simulation and applied analysis tools are
outlined below.
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5.2.1 N-body Simulation

The study is based on the analysis of the N-body, dark matter only simulation
described in Bos (2016). The cosmological context is that of a ΛCDM cosmol-
ogy with WMAP 3-year parameter values: Ωm = 0.268, ΩΛ = 0.732, ΩbZel =
0.044, h = 0.704, σ8 = 0.776 and n = 0.947. The simulation contains 5123 dark
matter particles in a simulation box with a boxlength of 300 h−1 Mpc. The sim-
ulations start at z = 60, following the initial displacement and velocity set by
the Zeldovich approximation (Zeldovich, 1970). The analysis described in the
present study focuses on the on the inventory of the force and tidal field at the
current epoch, z = 0.

5.2.2 DTFE Density and Velocity maps

To translate the spatial particle distribution into density and velocity maps, we
convert the particle locations and velocities into a space-filling DTFE density and
velocity maps. The density ∆,

∆ =
ρ

ρu
= δ+1 (5.1)

and velocity field vDTFE are sampled on a 5123 grid. It corresponds to a resolution
of 0.59h−1Mpc for each grid cell.

The Delaunay tessellation field estimator (DTFE) (Schaap & van de Weygaert,
2000; van de Weygaert & Schaap, 2009; Cautun et al., 2013), uses the Voronoi
and Delaunay tessellation of the spatial particle distribution to get an unbiased
volume-weighted estimate of the local density including a natural interpolation
over the entire volume using the dual Delaunay tessellation as natural interpo-
lation grid. Application of DTFE to the velocity field, traced by the simulation
particles, not only yields a volume-weighted space covering reconstruction of the
velocity field but also yields maps of the first order gradient of the flow field, ie.
the divergence and shear (and even vorticity) of the flow field (Bernardeau et al.,
1997; van de Weygaert & Bernardeau, 1998; Romano-Díaz & van de Weygaert,
2007; van de Weygaert & Schaap, 2009). THE DTFE density and velocity fields
are sampled on a 5123 grid.

5.2.3 MMF/NEXUS+

To dissect the cosmic matter distribution into the various morphological com-
ponents of the cosmic web we use the MMF/NEXUS pipeline, specifically its
NEXUS+ version (Cautun et al., 2013, 2014). It is the highest dynamic range
version of the NEXUS library of routines for pattern classification based on
the MMF/Nexus Multiscale Morphology Filter formalism (Aragón-Calvo et al.,
2007a,b, 2010; Cautun et al., 2013, 2014). For a short review see appendix 5.A, as
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Figure 5.4: Cosmic Mass distribution and force field. Top panel: the particle dis-
tribution, at z = 0 in a 0.59 h−1Mpc thick slice from a LCDM N-body simulation
in a 300 h−1Mpc by 300 h−1Mpc box. Bottom panel: the corresponding gravity
force vector plot in the same slice.
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Figure 5.5: Cosmic web components identified by Nexus+: filaments, voids,
walls and cluster nodes. Each panel shows a representation of a 300 h−1Mpc
by 300 h−1Mpc by 0.59 h−1Mpc slice from the N-body simulation used. Top left
panel: Filaments. The NEXUS+ filament contours, in blue, are superimposed on
the log density field. Top right panel: Voids. The NEXUS+ void boundary con-
tours, in orange, are superimposed on the log density field. Bottom left panel:
Walls. the NEXUS+ wall contours, in green, are superimposed on the log density
field. Bottom right panel: Cluster nodes. The cluster nodes, indicated by red
symbols, are superimposed on the log density field.
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well as Libeskind et al. (2018). We specifically chose to use the NEXUS+ version
as it is optimally suited to take into account the multiscale nature and the wide
dynamic range of cosmic web density field (Cautun et al., 2014). Compared with
the other NEXUS methods it provides the sharpest rendering of the cosmic web,
including the more tenuous walls and filaments.

Instrumental and unique for the class of MMF cosmic web identification
methods is that it simultaneously pays heed to two principal aspects characteris-
ing the web-like cosmic mass distribution. The first aspect is that of the different
geometric shapes of the various structural components of the cosmic web, in
particular the anisotropic shapes of filaments and walls. The Hessian of the
corresponding fields translates into the local geometry and local anisotropy on
the basis of the ratios of its eigenvalues. That is, it determines whether the mass
distribution has a roundish, flattened or elongated geometry. The second aspect
is that of the multiscale character of the cosmic mass distribution, the product
of the hierarchical evolution and buildup of structure in the Universe. To this
end, MMF/Nexus invokes a Scale-Space analysis to enable it to probe the scale
dependence of the local geometry of the mass (or velocity or gravity) distribution.
It allows the detection, and complete and unbiased characterisation, of features
present at all scales, from the prominent structures present in overdense regions
to the tenuous networks pervading the cosmic voids.

The MMF/Nexus formalism results in a scale adaptive framework that clas-
sifies the matter distribution on the basis of local spatial variations in either the
density field, velocity field or gravity field. Their geometry and anisotropy are
encoded in the Hessian matrix determined at each of the spatial scales at which
the fields are assessed. Subsequently, a set of morphological filters is used to
classify the spatial matter distribution into three basic components, the clusters,
filaments and walls that constitute the cosmic web. It produces a map in which
for each location in the analysed volume the morphological identity is specified.
The end product of the pipeline is a multiscale identification of the cosmic web
into its structural components. To this end, each location and mass element of
the matter distribution is assigned a unique morphological identity as either be-
longing to a filament, cluster node, wall or void.

For more details on the MMF/Nexus formalism we refer to appendix 5.A.

NEXUS+: practical implementation

While in principle theNEXUS Scale Space formalism involves an infinite number
of scales, in our practical implementation we use a finite number of filter scales,
restricted to the range of [1.0,4.0]h−1Mpc. We tested a few other filter ranges, and
concluded that the used range provides a robust population of filaments. This
includes the major dynamically dominant filaments, along with a fair fraction
of the tenuous tendrils. We also assessed this for the higher redshift simulation
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Table 5.1: Mass and volume fractions of the different components of the cosmic
web as identified by NEXUS+.

Component Mass fraction [%] Volume fraction [%]
Filaments 46.2 7.25
Voids 21.4 72.09
Nodes 4.6 20.65
Walls 27.8 0.01

snapshots, to find that for z > 3.8 most filaments are to be found in this scale
range.

The morphological signature is evaluated on a 5123 grid, ie. for each of the
gridpoints on this grid NEXUS+ provides us with the identity of the morpholog-
ical features to which it belongs.

5.3 Force and Strain Field: Procedure

For the computation of the diverse gravitational force and tidal fields, we use a
brute force approach. At each grid location we compute the contributions by the
various morphological elements of the cosmic web by summing the gravitational
and tidal force contributions from the grid points located in the regions that have
been identified with this morphology. In short, the force and tidal influence of fil-
aments is the sum of the mass elements residing in filaments, of voids the sum of
mass elements residing in voids, etc. The total (peculiar) gravitational force and
tidal strain at each location is the sum of the contributions by all mass elements
in the volume.

The stated force and tidal force calculations involve the following practical
issues:

1. The gravitational force field and tidal strain field are evaluated on the same
5123 grid as the one on which we have computed the DTFE density field,
and assessed the NEXUS+ identity (see previous section).

2. The forces and tidal strains are computed by brute force, i.e. we compute
these at a given location by summing the force and tidal contribution.

3. Following a sheer brute force summation, our computational resources al-
low us to carry out the computation for a restricted number of locations,
instead of for all 5123 gridpoints.

4. For the brute force computation, we assume that a spherical surrounding
volume of radius 150h−1Mpc, corresponding to the largest sphere that fits



5

208 Chapter 5. Cosmic Web Dynamics: Forces and Strains

inside the simulation box, is sufficient to include all gravitationally relevant
influences. In other words, force and tide contributions are considered to be
negligible beyond a distance of r = 150h1−Mpc. This is certainly true for the
tidal contributions, and turns out to be valid to very good approximation
for the gravitational force itself.

5. A more efficient Fourier space based formalism is under development, but
has not yet been applied to the analysis of the simulation in this study. A
Fourier code would automatically guarantee periodic boundary conditions
pertaining to the simulation box, and hence by implication include the force
and tidal influences throughout the entire simulation volume.

Because the brute force calculations are computationally intensive, we re-
stricted the force and tidal evaluations to a few slices of the simulation box, yield-
ing a total of 5122 force evaluations on the corresponding 5122 grid. The force
at each point is computed using the full three dimensional grid, yielding a fully
three dimensional force and tidal tensor at each gridpoint. For the statistical re-
sults presented in our study, we established that the force and tides on a 5122

two-dimensional grid is representative and hence sufficient for our discussion.
Figure 5.4 shows the resulting total force field. Figure 5.5 shows the NEXUS+
morphological identifications in the same slice. The volume and mass fractions
for the different components of the cosmic web are given in Table 5.1.

5.3.1 Gravitational Force field

The peculiar gravitational force field for a continuous matter distribution field,
specified in terms of the density perturbations δm(x),

∆m(x) =
ρ(x, t)− ρu(t)

ρu(t)
, (5.2)

The resulting peculiar gravity field, following Peebles (1980), is given by

g(x) =
3ΩmH

2
0

8π

∫
dx′∆m(x

′)
x′ − x
|x′ − x|3

. (5.3)

As we represent this field on a discrete grid, the force integral expression is con-
verted into a sum over the mass-weighted contribution to the gravitational force
by each gridpoint. Evaluating the force field at the gridpoint i, at location xi, the
corresponding grid expression for the full force field gi(xi) is the sum over all N
gridpoints j, at locations x′ j ,

g(xi) =
3ΩmH

2
0

8π

N∑
j

∆m(x
′
j )

(xi − x′ j )
|xi − x′ j |3

. (5.4)
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The summation is done up to a distance of 150h−1Mpc.
The gravitational force induced by the different cosmic web morphological

components is obtained by the straightforward mass-weighted summation over
all gridpoints that are located within the NEXUS+ identified regions, ie. the
regions identified by NEXUS+ with either cluster node, filament, wall or void.
The four cosmic web morphological components are assigned by index CWM =
node,f il,wall,void. The (peculiar) gravitational force induced by the mass re-
siding in any of these four morphological components is then the sum of the
gravitational pull induced by theM mass elements residing in the corresponding
areas,

gCWM(xi) =
3ΩmH

2
0

8π

M∑
k

∆m(x
′
k)

(xi − x′k)
|xi − x′k |3

. (5.5)

where xi is the location for which the force is calculated, xk one of the locations
identified as belonging to morphological feature CWM and M the total number
of grid-points identified with that morphological feature.

The net result of the force calculation is a representation of the force field
g(x) at every gridpoint by five force vectors, the full gravitational force g(xi),
and the fourmorphological contributions, gnode(xi), gfil(xi), gwall(xi) and gvoid(xi).
Evidently, the total force g(xi) is the sum of the four morphological contributions,

g(xi) = gnode(xi) + gfil(xi) + gwall(xi) + gvoid(xi) . (5.6)

Gravitational Force field: visualization

One of the principal aspects of the present study is to study and assess the grav-
ity, velocity and tidal tensor fields. Before any quantitative and statistical as-
sessment of these fields, the most direct impression of their characteristics and
spatial properties is obtained by visual inspection.

To obtain an impression of the spatial structure and properties of the gravity
and velocity fields, we invoke a few different visualisations:

• gravitational force amplitude maps
of the amplitude of the gravitational force, and of the amplitude contribu-
tions by the various individual cosmic web morphological components.

• gravity vector field maps
This includes maps of the full gravity vector field, as well as the vector
plots of the gravity contributions by the various individual cosmic webmor-
phologies.
In the various gravity vector plots, we depict the component of the gravity
vector in the plotted (2-D) box slice. The vectors are oriented towards the
direction of the gravity vector component in the box slice. The length of the
gravity vectors is normalized in one of two different options:
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- total gravitational force:
vector length proportional to the amplitude of the total gravitational force
g(x), in units of the mean gravitational force amplitude, ie. in units of the
dispersion σ (|g|).

gCWM
tot (x) =

gCWM(x)
σ (|g|)

. (5.7)

- relative gravitational force:
local relative contribution to the gravitational force by each of the cosmic
web components, by expressing the amplitude of the gravitational force in
terms of the (local) total gravitational force g(x),

gCWM
rel (x) =

gCWM(x)
|g(x)|

=
gCWM
tot (x)
|gtot(x)|

. (5.8)

In a sense, gCWM
rel (x) adheres to the concept of the fractional contribution by

the cosmic web components CWM to the local gravitational force.

• velocity streamlinemap. The velocity streamline field provides a transparent
view of the spatial structure of the velocity field, and allows the identifica-
tion of regions dominated by divergence, ie. inflow or outflow, and those by
shear flow. To this end, the gravity field is transformed into an equivalent
linear velocity field (Peebles, 1980),

vlin =
2f

3H0Ωm
g , (5.9)

in which the linear growth rate

f (Ωm) =
a
D

dD
da
≈ Ω

γ
m ,γ = 0.55+0.05(1+w) , (5.10)

Streamlines are everywhere tangent to the velocity vectors in the flow field,
and represent the direction of velocity at each point in the flow. On the
basis of the linear velocity field, the streamline map is inferred using the
matplotlib (Hunter, 2007) function pyplot.streamplot.

5.3.2 Tidal field

To calculate the tidal field at r = (x1,x2,x3) we use the traceless tidal tensor de-
fined as (van de Weygaert & Bond, 2008b)

Tij (r) =
3ΩmH

2
0

8π

∫
dr′∆m(r

′)
3(x′i − xi)(x

′
j − xj )− |r

′ − r|2δij
|r− r′ |5

−1
2
ΩH2∆m(r)δij ,

(5.11)
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In order to calculate this numerically we turn the integral into a discrete sum
over the grid with the DTFE density field values. In our evaluations, we smooth
the density field with a Gaussian on a scale of 5 h−1Mpc. This is done to smooth
out the regions in which nonlinear behaviour would be dominant. Representing
this field on a discrete grid, the tidal force integral expression is converted into
a sum over the mass-weighted contribution to the tidal force by each gridpoint.
Evaluating the tidal field at the gridpoint (r), the corresponding grid expression
for the full tidal field T̃ij (r) is the sum over all N gridpoints (r′)

T̃ij (r) =
3ΩmH

2
0

8π

N∑
k

∆m(r
′)
3(x′i − xi)(x

′
j − xj )− |r

′ − r|2δij
|r− r′ |5

. (5.12)

In order to separate the tidal field contribution by the different components
CWM - (node,filament, wall or void) - of the cosmic web we sum only over the
M gridpoints that are located within a region identified as of morphology CWM.
Only the mass allocated at those gridpoints ia taken along in the tidal force
calculation.

T̃ CWM
ij (r) =

3ΩmH
2
0

8π

M∑
k

∆m(r
′)
3(x′i − xi)(x

′
j − xj )− |r

′ − r|2δij
|r− r′ |5

. (5.13)

The sum uses all cells up to a radius of 150h−1Mpc. The traceless tidal tensor Tij
follows from

Tij = T̃ij −
1
3
(T̃11 + T̃22 + T̃32)δij . (5.14)

The eigenvalues of tensor Tij are

T1 > T2 > T3

|T | =
√
T 2
1 + T 2

2 + T 2
3 (5.15)

where T1, T2 and T3 are the sorted eigenvalues of the Tij matrix and |T| signifies
the strength of the tidal field. The accompanying eigenvectors T̂1, T̂2, T̂3 are sorted
accordingly. The value of the different eigenvalues signify the level of elongation
or contraction that the correspondingmass element undergoes due to tidal forces.

Tidal field: normalization & visualization

In the analysis of the tidal field, we use two different normalization options:

- total tidal force:
the tidal force induced by cosmic web component CWM, T CWM

ij (x), in units
of the mean tidal force amplitude, ie. the dispersion σ (|T |)

T CWM
ij,tot (x) =

T CWM
ij (x)

σ (|T |)
. (5.16)
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- relative tidal force:
local relative contribution to the tidal force by each of the cosmic compo-
nents, by expressing the tidal tensor components and amplitude in terms
of the local total gravitational force |T |tot(x),

T CWM
ij,rel (x) =

T CWM
ij (x)

|T |(x)|
. (5.17)

In a sense, T CWM
ij,rel (x) adheres to the concept of the fractional contribution

by the cosmic web components CWM to the local tidal field.

To visualize orientation, coherence and strength of the tidal force field, we
use two different kinds of maps:

• tidal force amplitude maps
maps of the amplitude of the tidal field and tidal field contributions by the
various cosmic web morphological components. For the amplitude of the
tidal field we use |T | as defined in Eq. 5.15.

• tidal bar maps
Tidal bars indicate the direction of the principal orientation of the tidal
force field, in combination with their strength. They have the orientation of
the eigenvectors of the tidal force, with a length proportional to the absolute
value of the corresponding eigenvector,

Ti,plot = T̂i |Ti |. (5.18)

In the tidal bar maps in the present study we depict the compressional com-
ponent of the tidal force.

From these maps we may hence deduce the directions along which the mass ele-
ments get compressed.

5.4 Gravitational Force Field

The gravity field contributions by the various cosmic web components, for the
specific case of the slice in figure 5.4, are shown in figure 5.6 and figure 5.7. The
four panels in figure 5.6 show the gravity vectors for the combined force impact
by filaments (top lefthand frame), voids (top righthand frame), walls (bottom
lefthand frame) and cluster nodes (bottom righthand panel). We should note that
the vector arrows for the filament force field are rescaled, as they are by far the
most substantial contribution to the gravity force field (which should perhaps
not surprise us, given filaments contain more than 50% of the cosmic matter
content, see Cautun et al. (2014)). With the gravity vector plot providing insight



5

5.4. Gravitational Force Field 213

Figure 5.6: Gravitational Force field by Cosmic Web component: vector field.
The force fields originating of the different components for the complete field,
normalised by the total field (see Section 5.3.1). Top left has filaments, Top right
has voids, bottom left has walls and bottom right has nodes. Note: For this figure,
filaments are rescaled with respect to the other components. In comparison the
filament arrows should be longer. Voids, walls and nodes are one the same scale.



5

214 Chapter 5. Cosmic Web Dynamics: Forces and Strains

0

50

100

150

200

250

300

y
[h
−

1
M

p
c]

0 50 100 150 200 250 300

x [h−1Mpc]

0

50

100

150

200

250

300

y
[h
−

1
M

p
c]

0 50 100 150 200 250 300

x [h−1Mpc]

Figure 5.7: Gravitational Force field by CosmicWeb component: amplitude field.
The amplitude of the peculiar force field log10 |g| for the different components of
the cosmic web for a 300 h−1Mpc by 300 h−1Mpc by 0.59 h−1Mpc slice. The top
left panel shows the component originating from filaments, the top right panel
shows the component originating from voids, the bottom left panel shows the
component originating from walls and the bottom right panel shows the compo-
nent originating from nodes. The red box indicates the region used for the zoom
in Figure 5.10.
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into the structural patterns of the induced gravitational force fields, maps of the
strength of the gravitational force yield the needed information on the relative
strength of the cosmic web morphological components and the spatial extent of
their influence. Figure 5.7 contains the four corresponding panels with force
amplitude level maps for the filament population (top lefthand), void population
(top righthand), wall population (bottom lefthand) and cluster nodes (bottom
righthand).

One immediate observation is the significant differences between the gravi-
tational influence of the different morphological components of the cosmic web.
Each contributes uniquely to the total force field, yielding force fields that differ
substantially in shape, coherence, scale and amplitude. Most outstanding is the
dominant gravitational influence of the filamentary network. Their overarching
strength can be directly inferred from the gravity amplitude maps in figure 5.7.
The towering influence of filaments is expressed in the fact that throughout the
simulation box the filament force is factors higher than that exerted by voids and
walls. Only cluster nodes reach comparable strengths, but this is only restricted
to the immediate vicinity of the cluster nodes. Perhaps the most interesting find-
ing is that of the significant and coherent gravitational impact of voids, marked
by a typical signature in terms of characteristic bubble shaped regions in and
around minima in the matter distribution, the manifestation of a typical - effec-
tively repulsive - force field pattern. Moreover, comparison between the cluster
node and void force field reveals the perhaps surprising conclusion that voids are
the more dominant component over far larger regions of a cosmic volume.

5.4.1 Filaments

From the filament force vector field map (top lefthand panel, fig. 5.6), we see
that the gravitational influence of filaments acts coherently over a large range of
distances. In fact, its overall structure and pattern is quite close to that of the
total gravitational force field (bottom panel, fig. 5.4, a telling testimony of the
fact that most of the large scale gravitational force field is due to the combined
influence of the filamentary network. We should also note that, as expected, the
force field only traces the largest structures. Small scale features hardly induce a
noticeable effect. The overpowering dynamical influence of the filamentary net-
work should not come as a surprise: the filamentary network of the cosmic web
represents more than 50% of the cosmic matter content of the universe (Cautun
et al., 2014). As important is the pervasive spatial character of the multiscale fila-
mentary network, with filaments spreading throughout cosmic volumes and their
tendrils branching out into even the most remote and desolate realms (voids).

Inspection of the force amplitude map shows that over nearly the entire cos-
mic volume filaments are responsible for high force amplitudes, their overdense
nature guaranteeing a consistent and coherent cumulative attractive force contri-
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bution (top lefthand panel, fig. 5.7). We find that over almost 97% of the cosmic
volume, the filament induced forces dominate over that induced by any of the
other morphological components (table 5.2, 3rd column). The largest and dens-
est filaments create coherent force fields on scales up to ∼ 50 h−1Mpc. In fact, the
coherence scale of the force field is much larger than that of the weblike structure
of the underlying matter distribution.

5.4.2 Voids

The picture is considerably different for the void force field. The top right-
hand panel of figure 5.6 shows a spatial pattern marked by individual divergent
patches, indicating individual expanding void regions. Inside these individual
void regions, the force field increases monotonically - and usually almost linearly
- from the center of a void to their boundary of surrounding walls and filaments.
It produced the characteristic superhubble expanding void regions (see e.g. Icke,
1984; van de Weygaert & van Kampen, 1993). Due to the rapidly rising mass
density near their boundary, the strength of the void force field drops at the void
edge, resulting in the conspicuous bubble-like configurations that stand out in
the void force field in figure 5.6.

Overall the void force field appears to be one in which individual superhub-
ble expanding voids (Icke, 1984) produce a segmented volume with clearly dis-
tinguishable individual void regions. Indicative for the latter are the small voids
near the center, whose influence appears to be mainly limited to their own in-
terior. Nonetheless, we may observe assemblies of voids that seem to operate
collectively in pushing out the surrounding mass, such as the the void agglomer-
ation at the top left of the field. Its force fields adds up to create an expanding
region on a scale of ∼ 50 h−1Mpc.

In all, it suggests that in general voids hold sway over in particular their local
environment, in which large scale effects are significant but less prominent than
those seen in the filament force field. On large scales voids do produce significant
residual large scale effects emanating due to their spatial clustering, be it of a
lower amplitude than that characteristic for the forces in individual voids. It
confirms the finding by Platen et al. (2008), who showed that voids even induce
noticeable tidal effects over scales in excess of ∼ 30 h−1Mpc).

5.4.3 Walls

The force field induced by the walls is the least conspicuous one of the web mor-
phologies. Throughout the cosmic volume it is very weak, as testified by the map
of its force strength (see bottom lefthand panel fig. 5.7. The walls do not con-
tribute much to the overall force field. Also, as they populate moderate density
realms as well as the interior of voids (see e.g. Cautun et al., 2014), their effect
may be effectively either be attractive or repulsive. To some extent, it leads to the
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moderate and low density walls compensating each others force contributions. It
results in a force field that only faintly reflects the cosmic web pattern seen in the
filament and void force fields.

Globally, the spatial structure of the wall force map bears resemblance to that
of the filament strength map (top lefthand panel fig. 5.7. It appears to be a faint
reflection of the filament strength map. One may recognise only a part of the
most prominent features that are seen in the filament force field, others are con-
spicuously absent: e.g. the strong filament force field at the top lefthand corner
of the box does not seem to have a wall equivalent. Also the overall large scale
pattern of the wall force vector map does resemble that of the filament force vec-
tor map. However, the wall force map appears far less coherent and organised,
marked by a considerable number of randomly scattered small scale patches of
irregular oriented force vectors.

5.4.4 Cluster Nodes

A rather surprising finding is the fact that cluster nodes only appear as highly
localised force centers, and they are far from the dominant gravitational compo-
nent of the cosmic web that we had expected them to be.

In the force strength map (bottom righthand panel, fig. 5.7) cluster nodes
stand out as compact high amplitude peaks in the force field. They act as a set
of randomly clustered monopole attractors. The cluster nodes are only dominant
over the rather small scales of their immediate environment. At this range, they
overshadow all other force contributions. In most cases, this is only over dis-
tances of a few h−1Mpc, in an occasional exception out to ∼ 20h−1Mpc. The latter
concerns an agglomerate, “superclusters", such as that at the bottom centre of the
map (bottom righthand panel, fig. 5.7).

Their spatial connection to the cosmic web is less clear, and it is not easy to
recognize the global weblike mass distribution in their own spatial arrangement
or the direct dynamical relation between the cluster nodes and the spatial intri-
cacies of the cosmic web. At large scales there are substantial regions were the
influence of multiple nodes is one in which they effectively cancel each other, re-
sulting in a contribution that is less than - or at best comparable to - that by the
voids.

5.4.5 Gravity Field strength: statistical analysis

To quantify the visual impressions of the force field contributions by the different
cosmic web components, discussed extensively above, we assess the statistical
(volume-weighted) distribution of the fractional gravitational force contributions
by each of the cosmic web components CWM. The fractional gravitational force
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Table 5.2: Gravitational Force Statistics. The second column shows the mean
force ratio for the different components of the cosmic web, Note the direction
dependence in the ratio |g|CWM/ |g|tot. The third column shows the percentage of
the total volume where each component has a contribution that is larger than the
other components.

Component Mean [%] Largest in [%]
Filaments 60.4 97.2

Voids 20.3 0.9
Nodes 17.0 1.5
Walls 13.7 0.4

F (r) at each location r is defined by the ratio,

F CWM(r) =
|gCWM(r)|
|gtot(r)|

, (5.19)

where gCWM(r) is the gravitational force exerted by the components CWM - i.e.
filaments, voids, walls and cluster nodes - at location r. The total sum of these is

gtot(r) =
∑
CWM

gCWM(r) . (5.20)

Note that the ratio is independent of direction, while the sum of the forces does
take into account the orientation of each force contribution. As a result, the frac-
tional force F (r) may have a value larger than unity. The average ratios for the
fractional force contributions are listed in table 5.2. There is a clear hierarchy of
force field contributions: filaments ≫ voids > nodes > walls. Averaged over all
volume elements, the filament impact is on average no less than 60%, with voids
as a surprising second at on average contributing ∼ 20% of the local gravitational
force.

The distribution for the complete force field is shown in the top panel of Fig-
ure 5.8. The bottom four panels show the same distribution, but split up by
morphology. They show for each of the four cosmic web environments, the frac-
tional force contribution by each of the morphologies. In other words, these tell
you what the relative impact is of filaments in voids, of voids in filaments, or of
cluster nodes in filaments.

The top panel of Figure 5.8 reveals the major differences in force impact by
the different cosmic web components. Filaments stand out as by far the most
dominant element of the cosmic web. Their force impact ranges over a wide range
of values F f il(r), centering around 60% of the total gravitational force. At the
vast majority of locations the filamentary cosmic web is the leading gravitational
influence.
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Figure 5.8: Cosmic Web Gravitational Force Field: Strength Inventory. Top
panel: The distribution of |gCWM|/ |gtot| for the different components of the cos-
mic web. Each using the complete field. Bottom four panels: the distribution of
|gCWM|/ |gtot| for the different components of the cosmic web. Per panel the pdf
for cosmic web component CWM is plotted, within three different environments:
filaments (blue), voids (yellow), walls (green). Centre left: filament induced force
field. Centre right: void induced force field. Bottom left: wall induced force field.
Bottom right: cluster induced force field.
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Figure 5.9: Cosmic Web Gravitational Force Field: Strength Inventory by Cosmic
Web environment. The panels show the pdf of the induced gravitational force
field |gCWM|/ |gtot| by each of the four cosmic web components CWM in the differ-
ent cosmic web environments. The different colours represent the different com-
ponents: filament induced force field (blue), void induced force field (yellow),
wall induced force field (green) and cluster node induced force field (magenta).
Top left panel: total gravitational field. Top right panel: gravitational field in
filaments. Bottom left panel: gravitational field in voids. Bottom right panel:
gravitational field in walls.

The role of voids is one of the most interesting aspects of the gravitational
force inventory. They appear to be the second most dominant source of gravi-
tational force. They account for more than 20% of the local force at far more
locations than e.g. walls, and even than cluster nodes. At many locations voids
assume an even stronger fraction of the force budget. The fact that the void dis-
tribution function has a long high end tail implies that voids are the dominant
influence at various regions of the cosmic web. Nearly without exception this
concerns the interior of large voids. A similar long high end tail is found for the
cluster node gravitational influence F node(r), reflecting the overpowering gravi-
tational influence of nodes in and around their own location. We find that the
cluster node distribution has a mode near 10 − 12% of the total force, substan-
tially less than that of voids. It means that over most of the cosmic volume, voids



5

5.4. Gravitational Force Field 221

have a stronger gravitational influence than cluster nodes !
As expected, the distribution of the wall force fraction F walls(r) expresses

their weak role in the cosmic web force budget. Not only does the distribution
peak around 10%, quite similar to the mode for cluster nodes, but it also con-
cerns a narrow distribution without an outstanding tail towards higher values. It
shows that walls, over nearly the entire cosmic volume, are only a minor fiddle
in the force concert.

Assessing the force impact differentiated by cosmic web environment pro-
vides additional information on the nature of the dynamical impact of filaments,
voids, walls and nodes. These are provided by the bottom panels of figure 5.8
and by the panels of figure 5.9.

Differentiating between the impact of morphological components in different
environments, the four bottom panels of figure 5.8 reveal a few interesting as-
pects. Filaments are clearly the dominant dynamical component over the entire
cosmic volume, and this is true in voids, walls as well as in filaments themselves
(voids: bottom lefthand panel fig. 5.9, walls: bottom righthand panel fig. 5.9,
filaments: top righthand panel fig. 5.9). In the case of the filament interior,
the shoulder of the filament pdf reveals that it is in particular inside filaments
themselves that they display the strongest impact: filaments hold sway inside
filaments. A minor detail is that we see that F f il(r) is higher in walls than in
voids. This surely is a manifestation of the spatial proximity of filaments to these
structures: voids are large, and in the central interior the filament’s force may be
somewhat weaker than in and around the walls to which they are connected.

For the impact of voids in different cosmic web environments, we see that
they hold their strongest influence over the void regions themselves, while they
are relatively stronger in walls than in the interior of filaments (centre righthand
panel fig. 5.8). Inside void interiors, the force inventory quantified in the bottom
lefthand panel of fig. 5.9 shows how important external influences are in the dy-
namics and evolution of voids. The filament forces dominate the force field of
voids. This is certainly true for the outer regions of voids, but may even be so for
their inner regions. The latter will be most evident for small voids, where these
external forces may even induce their collapse, an essential process - called void-
in-cloud - in the buildup of the void population (Sheth & van deWeygaert, 2004).
However, the filaments represents the principal gravitational influence for even
the large voids. This implies that any analysis of void dynamics should include
the mass distribution surrounding the void (see e.g van de Weygaert, 2016, for
a recent review), while any exploitation of the characteristics of the void popu-
lation for cosmological purposes cannot ignore this fact and base their analysis
on simplistic isolated void dynamics (see e.g. Pisani et al., 2019). A recent study
of the dynamics of a sample of voids from SDSS, including velocity flow infor-
mation from the Cosmicflows-4 galaxy peculiar velocity survey, did also indicate



5

222 Chapter 5. Cosmic Web Dynamics: Forces and Strains

this finding in the observational reality (Courtois et al., 2023).
Meanwhile, less outstanding are the observations with respect to the gravita-

tional influence of nodes and walls. Their impact appears relatively indifferent
to the environment. The node force fraction decreases slightly going from voids
to walls to filaments. This might be somewhat counter intuitive, but is an ex-
pression of the fact that filaments are so much stronger than walls and voids.
Relatively speaking, nodes will then assume a smaller force fraction F node(r) in a
filament environment.

5.5 Gravitational Force Field:
individual structures

In this section we zoom in on the force structure in and around a few represen-
tative individual features. This with the intention to develop an intuitive and
visual image of the role and gravitational influence of the different cosmic web
components with respect to the various large scale environments, and to appreci-
ate the complex interplay between them. We concentrate on the force field in and
around a single void, around a filament, and one in and around a cluster node.
In each case we zoom in on 50 × 50h−1 Mpc segment. They confirm the obser-
vations and conclusions that we reached in the previous section on the basis of
its structural and statistical assessment analysis of the cosmic web gravitational
force field.

5.5.1 Case study 1: void force field

Our first study case is the force field in and around a void. Against the backdrop
of the corresponding density field, with the red contours indicating the NEXUS+
identified region, the four panels in figure 5.10 show the decomposition of the
gravitational force field in and around the void into its individual morphological
contributions. The force field is decomposed into the filament induced force field
(top lefthand panel), that by voids themselves (top righthand panel) by walls
(bottom lefthand panel) and by cluster nodes (bottom righthand panel).

Evidently, the filament induced force field dominates over nearly the entire
region. Two of the most characteristic aspects of the filament induced force
field is its large scale reach and coherence, and the easily recognisable signa-
ture shear pattern in the gravity vector field. The latter involves the splitting
of the gravity vector field in opposite directions at saddle points of the corre-
sponding gravitational potential. Two of the most outstanding ones are the one
near righthand edge of the void (at (x,y) ≈ (190,140)h−1Mpc, and the one near
(x,y) ≈ (170,120)h−1. The latter is situated in between two dense concentrations
within the filamentary network. These are responsible for stronger attractive
cores along the filaments. The two dense mass concentrations along the filament
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Figure 5.10: Gravitational force vector field in and around void region. The re-
gion is a 50 h−2Mpc2 region centered on a void (void center: orange star, top
lefthand panel). The panels represent the force vector field in this region gen-
erated by the different morphological components of the cosmic web. Top left
panel: filament induced force field; top right panel: void induced force field;
bottom left panel: wall induced panel; borrom right panel: cluster node induced
field. The arrows show the magnitude and direction of the corresponding (nor-
malized) gravitational force, gCWM

tot . The vector field is superimposed on the (log)
density field map. In the different panels the red contours indicate the regions
belonging to the corresponding NEXUS+ identified cosmic web component. The
orange star (top righthand panel) indicates the void center, the blue star (top left
panel) the filament location, around which the radial force profiles in figures 5.11
and 5.12 are determined.
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turn out to bemassive filamentary branches connecting to a cluster node, forming
the connections of the cluster with the filamentary skeleton of the cosmic web.
Over this specific void, the cluster node represents a sizeable external influence
over the entire realm of the void. The cluster induced force field is comparable
in magnitude to that of the void force field itself.

The coherence of the filament induced gravity field over the entire reach of
the central void is the source for a large scale bulk flow (eq. 5.9), superimposed
on the iconic superhubble divergent flow induced by the void(s) themselves. The
induced force field by the voids themselves is easily recognisable, consisting of
an almost pure divergent vector field centered around the density minimum (top
righthand panel fig. 5.10. To first approximation, the superhubble force field in
the interior of the void involves a radially outward directed force that increases
with distance to the center (see eg. Icke, 1984; van de Weygaert, 2016). It reflects
the almost uniform (underdense) mass distribution in the interior of the void
(see e.g van de Weygaert & van Kampen, 1993; Sheth & van de Weygaert, 2004).
In reality, also voids display a substantial level of substructure. The presence
of a small expanding subvoid superimposed on the large central void reflects
the multiscale structure of both the interior void density and velocity field. It is
the product of the hierarchical buildup of the void population (Sheth & van de
Weygaert, 2004; Aragon-Calvo & Szalay, 2013).

While the filamentary force field displays a coherence over nearly the entire
volume, the void induced field appears to be more restricted in spatial extent.
The void gravitational force increases radially outward up to its boundary, at
a radius of around r ≈ 10 − 15h ∗ −1Mpc. At the edge it plummets to an almost
negligible influence, as the gravity by the higher density outer realms of the voids
kick in to compensate for the influence underdense interiors. Minor residual void
forces may be traced in the interstitial boundary regions, yielding the suggestion
of the voids pushing matter into the surrounding weblike filamentary and planar
structures. Similar patterns are seen to emanate from the surrounding voids. As
a result, we get the impression of a void force field segmented into separate void
regions. This was also seen on the more global scale of the simulation volume in
the void force field in figure 5.6 (top righthand panel). In all, we may conclude
that while voids may have some minor effect on large scale flows, their main
impact seems to be that of the local pushing around of matter into the interstitial
elements of the cosmic web.

Quantitatively the above impressions are supported by the radial profile of
the different force amplitudes around the center of the void. The top panel of
Figure 5.13 plots the radially averaged force amplitude as seen from the center of
the void. It confirms the dominance of the filament induced gravity (blue line),
over the entire interior of the void (and beyond). The void induced force field
(orange line) reveals the expected characteristic (almost) superhubble expansion.
Near the edge of the void, the outward directed void force represents a substan-
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Figure 5.11: Radial gravitational force (amplitude) profile for the cosmic web
components CWM, around the (orange) void center (fig.5.10 , top righthand
panel). Plotted is the force ratio |gCWM|/ |gtot| for the CWM induced gravitational
force amplitude, as a function of distance from the void centre. Blue: filament
force amplitude; yellow: void force amplitude; magenta: cluster node force am-
plitude.

tial fraction of the complete gravitational force, but never more than around 40%
of the filament force. A full account of the force field for this particular voids
also includes a substantial influence from the massive cluster node on its north
side, whose magnitude is comparable to that of the void itself. The corresponding
force profile (magenta line) confirms the visual impression offered by the bottom
lefthand panel of fig. 5.10.

Seen from the perspective of the filament, a complementary view of the size-
able void influence is obtained. The middle panel of Figure 5.13 shows the radial
force profile around the dense filament location at the bottom right of the region
(marked by a blue star, top left panel fig. 5.10). At small distances from this loca-
tion, still inside the filament, the filament induced force field is overwhelmingly
dominant, responsible for more than 80% of the full force field. As we move
towards the edge of the filament, and enter into the void’s realm, we observe a
rapid decline in the filament’s influence, going along with a corresponding rise of
the void’s influence. Further afield, as the influence of overdense surroundings at
the other side of the void becomes noticeable, we see that the force contribution
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Figure 5.12: Radial gravitational force (amplitude) profile for the cosmic web
components CWM, around the (blue) filament location (fig.5.10 , top lefthand
panel). Plotted is the force ratio |gCWM|/ |gtot| for the CWM induced gravitational
force amplitude, as a function of distance from the central filament location.
Blue: filament force amplitude; yellow: void force amplitude; magenta: cluster
node force amplitude.

by the void diminishes while that of filaments remains more or less constant.

5.5.2 Case study 2: cluster node force field & flowlines

The second case study concerns the force field around an isolated cluster node.
To get a visual appreciation of its impact on the environment, we assess the in-
duced flowfield in and around the node. To this end, we use the linear relation
between gravity and velocity (Eq. 5.9). Formally, it is only valid in the linear
regime, but to reasonable approximation may also be used in the quasi-linear
configurations we are investigating. It yields the implied velocity fields induced
by the four different cosmic web components, filaments, voids, walls and cluster
nodes. These velocity fields are visualized bymeans of the corresponding stream-
lines. It yields a flowline representation of the velocity field that provides a direct
insight into the structure of the cosmic migration flows. Figure 5.14 shows the
streamline fields for the induced flowfield by filaments (top lefthand panel), the
voids (top righthand panel), the walls (bottom lefthand panel) and the cluster
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Figure 5.13: Radial gravitational force (amplitude) profile for the cosmic web
components CWM, around the prominent massive cluster in fig. 5.14. Plotted is
the force ratio |gCWM|/ |gtot| for the CWM induced gravitational force amplitude,
as a function of distance from the cluster node location. Blue: filament force
amplitude; yellow: void force amplitude; magenta: cluster node force amplitude.

nodes (bottom righthand panel).
The most prominent aspect of the flowfield is the cluster node induced flow-

field (bottom righthand panel). The node induced a massive inflow pattern over
the entire entire region. The dominant impact of the cluster on its environment
is confirmed by the radial force profile centered on the node (bottom panel of
fig. 5.13). In the inner sphere of ≈ 5h−1Mpc around the cluster node, it dictates
the gravitational force field, taking care of even more than 80% at its center.
Outside of this immediate vicinity, its sway rapidly declines, taken over by the
surrounding filamentary web. To a considerable extent, the filament streamlines
offer a similar spatial flow pattern, augmented by the presence of shear signa-
ture. It concerns the impact of the massive filamentary branches connecting to
the node, and as such strongly related to this peak in the mass distribution.

By contrast, the void induced flow field offer a more localized pattern. In the
overall pattern we recognize the typical segmented nature of the field, carrying
the imprint of individual voids. More so than we have seen in the force vector
field, the flow field also reveals the tendency for a large void scale induced bulk
flow, running from the lefthand to the righthand side of the region. It is a man-
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Figure 5.14: Velocity flow field in and around cluster node. The region is a
50 h−2Mpc2 region, containing a massive cluster node (at bottom righthand cor-
ner). The velocity vector field is represented by the corresponding streamlines,
highlighting the overall spatial structure of the flowfield. The four panels show
the streamline field for the induced velocity flow field by each of the cosmic web
morphological components. The velocity field streamlines are superimposed on
the (log) density field map. In the different panels the red contours indicate the
regions belonging to the corresponding NEXUS+ identified cosmic web compo-
nent. Top left panel: filament induced velocity field; top right panel: void in-
duced velocity field; bottom left panel: wall induced velocity field; borrom right
panel: cluster node induced velocity field. In this indivual case, the velocity field
is clearly dominated by the cluster.
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ifestation of the multiscale nature of the void population, a direct consequence
of its hierarchical buildup (Sheth & van de Weygaert, 2004; Aragon-Calvo & Sza-
lay, 2013). Voids tend to be embedded in larger (less) underdense regions, whose
dynamical influence shows up in the superposition of the individual void out-
flows as a residual large scale (bulk) outflow (see Aragon-Calvo & Szalay, 2013,
for telling illustrations). As seen from the center of the cluster node, the void in-
duced flow field becomes noticeable at a distance of around ∼ 16h−1Mpc, beyond
which distance it represents a stronger contribution than that of the cluster itself.

5.6 Tidal field

To understand the dynamics underlying the formation and shaping of the cosmic
web, tidal gravitational forces and the induced deformation of mass elements
play an instrumental role (see e.g. Zeldovich, 1970; Bond et al., 1996; van de
Weygaert & Bond, 2008a; Hahn et al., 2010; Feldbrugge & van deWeygaert, 2023,
2024). The present study therefore needs to complement the inventory of the
gravitational force in the previous section by an analysis of the corresponding
tidal force field.

Following the definitions in section 5.3.2, in the present study we first inves-
tigate the tidal force field generated by filaments, voids, walls and cluster nodes
by means of tidal force amplitude maps, i.e. maps of the (traceless) tidal field
amplitude |T |,

|T | =
√
T 2
1 + T 2

2 + T 2
3 , (5.21)

with T1 > T2 > T3 the tidal field eigenvalues. Figure 5.16 presents the tidal ampli-
tude maps for the tidal fields generated by the filament population (top lefthand
panel), the void population (top righthand panel), the wall population (bottom
lefthand panel) and cluster nodes (bottom righthand panel). The first direct ob-
servation from the four frames is the difference between the tidal field morphol-
ogy and patterns to that of the force field. The tidal force field is intimately linked
to the weblike spatial pattern of the cosmic mass distribution, and also reflects
more closely its smaller scale structure than the force field. Recent work has also
revealed the close similarity between the structure of the primordial tidal field,
specifically its eigenvalues, and that of the emerging structure of the cosmic web
(see e.g Feldbrugge & van de Weygaert, 2023, 2024).

5.6.1 Tidal Field illustrated: tidal impact voids

To appreciate the intricacies of the cosmic web tidal force field, it is most insight-
ful to focus on the component induced by the voids and the void population. To
this end, we first zoom in on a few interesting and telling regions. Figure 5.15
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Figure 5.15: Tidal field induced by voids, in four different 50 h−2Mpc2 regions.
The tidal force field is represented by tidal bars and contours. All four panels
show the tidal field induced exclusively by the void population in the simulation
box. The tidal bars and contours are superimposed on the (log) density field map.
The tidal bars indicate strength and direction of the compressional component of
the tidal field. The definition and construction of the tidal bars is explained in
section 5.3.1.
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shows zoom-ins on four different regions of size 25× 25h−1Mpc. The four panels
show the tidal bars of the compressional components of the tidal field induced by
the void population in the matter distribution. The direction of the bars is along
the corresponding tidal tensor eigenvectors, their size proportional to that of the
corresponding eigenvalues.

The panels illustrate the close connection between the weblike spatial pattern
of the matter distribution, and its multiscale nature, and the tidal force field
induced by voids, which we find - as discussed in more detail below - to be a
surprisingly striking aspect of the large scale tidal field. Even more so than the
filament induced tidal force field, we find that the deformation of the matter
distribution is strongly correlated to the spatial pattern and connectivity seen in
the void induced tidal force field. The void tidal field traces out structures at all
scales and over a wide range of densities. It causes compression along even the
smaller, more tenuous, structures seen in the density field.

The clearest example of a void’s tidal impact is offered by the bottom left-
hand panel, centered at the interior of a void. It has the typical characteristics
of a tidal force field expected in and around voids. A typical aspect of the void
induced tidal force field is that it is weak in the interior of voids. It steeply in-
creases in amplitude as it enters the overdense boundaries, a reflection of the
strong differential gravitational force between interior and surroundings. In this
sense, it adheres closely to that expected for isolated spherical voids. It induces
a compressional component Trr along the radial direction, while the dilational
components Ttt are oriented along the tangential direction. At a radial distance r
from the void center, for a void with density profile ∆(r),

Trr = ΩH2
[
∆(r)− ⟨∆(r)⟩

]
,

Ttt = −
1
2
Trr (r) , (5.22)

in which ⟨∆⟩(r) is the mean interior density of the void. Hence, in the near uni-
form - bucket shape - mass distribution in the interior of voids (see e.g. van de
Weygaert, 2016) the tidal force field will be negligible. Meanwhile, the fact that
∆(r) > ⟨∆(r)⟩ as we enter the boundary of voids implies into a compressional tidal
force along the radial direction of the void. It translates into the compression of
mass elements in the radial direction of the void, reflecting the formation of an
overdense boundary around the void.

The variety and extent of the tidal impact of voids on their environment can
be appreciated from the other three panels in figure 5.15. The top righthand
panel is a telling illustration of their influence on the dynamics of filaments: the
tidal bars trace the three filamentary structures that are connecting to the node at
the top righthand corner of the panel. Evidently, the implication is that voids are
instrumental in effecting further compression of the filaments. Overall, we see
that the void induced tidal force field follows the underlying mass distribution
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Figure 5.16: Tidal field by Cosmic Web component: amplitude field. The ampli-
tude of the tidal field log10 |T | for the different components of the cosmic web for
a 300 h−1Mpc by 300 h−1Mpc by 0.59 h−1Mpc slice. The top left panel shows the
component originating from filaments, the top right panel shows the component
originating from voids, the bottom left panel shows the component originating
from walls and the bottom right panel shows the component originating from
nodes.

in meticulous detail, which we find to be an exclusive property of the void pop-
ulation. Even on scales smaller then a few Mpc the voids are able to closely trace
out the underlying matter distribution. The tidal fields of the other components
do not display this level of detail.
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5.6.2 Tidal Field Structure

For comparison between the tidal influence of the various cosmic web compo-
nents, figure 5.16 shows the tidal amplitude maps for each individual compo-
nent of the cosmic web. The top left panel shows the filament tidal field, the top
right panel shows the void tidal field, the bottom right panel shows the wall tidal
field and the bottom right panel shows the tidal field for nodes. The first global
impression offered by these maps is that the differences are starker than for the
corresponding force fields.

On large scales, the amplitude maps for the filaments and walls share a sim-
ilar pattern, be it that the tides generated by filaments is substantially stronger
than that for walls. The fact that they share a similar large scale spatial structure
is an expression of the fact that these anisotropic features are intimately related
aspects of the weblike network of which they are the principal constituent ele-
ments. A clear difference with the corresponding force amplitude maps (fig. 5.7)
is that the tidal fields rapidly drop to a negligible level directly outside the fila-
ments and walls, a direct reflection of the more localised nature of the tidal field.
In terms of the relative amplitudes the filament induced tidal forces are still dom-
inant (see fig. 5.17), in particular within the filament and wall network of the cos-
mic web, but far less so than in the gravitational force field. Within the interior of
the filaments, the filament induced tides stand out as by far the strongest influ-
ence. Wall induced tides are marginally stronger inside walls, somewhat stronger
than those induced by (nearby) filaments and voids (see fig. 5.18).

The filament tidal amplitude field delineates a large scale pattern of massive
elongated filamentary structures. With the elongated shape of the filaments is an
outstanding fundamental aspect of the filament tidal field, this goes along with
a rather substantial level of inhomogeneity along the filaments, with high ampli-
tude peaks marking the immediate high-density environment of massive clusters
or the branching connections with other filaments in the weblike network. It is
a direct reflection of the wide range of densities of filaments (see e.g. Cautun
et al., 2014) and of the large density variations along the ridges of filaments in
the cosmic web(see Cautun et al., 2014), which manifest themselves strongly in
the more localised nature of the tidal field (as opposed to the more large-scale
nature of the force field).

The wall tidal amplitude map shares the dominant large scale features seen in
the filament map, but also includes several different and significant characteris-
tics. While the same large scale structures in the wall tidal field can be seen, their
contrast is substantially less than that seen in the filament induced tidal field.
Also the tidal strength induced by the walls shows far less internal variation,
yielding a more coherent tidal field within the outlined structures. This is a di-
rect consequence of the mass density in walls beingmore uniform and spanning a
much narrower range than that of the filament population (see e.g. Cautun et al.,
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2014). By far the most outstanding difference to the filament tidal field, in addi-
tion to the degree of coherence, is the presence of far more small-scale structure
filling up the space between the dominant large scale structures. Throughout
the entire volume, it outlines a more intricate weblike network marked by the
tidal footprint of small walls. Often they surround or connect with each other
to form the boundaries of small void regions. In implies the multiscale nature of
the cosmic web to be more readily visible in the wall induced tidal field than that
in the overpowering filament tidal field, the latter more dominated by the major
arteries of the cosmic web.

It is the void induced tidal field that reveals a surprisingly different pattern
than that seen in the filament tidal amplitude map. In a sense it extrapolates
the trend seen in the wall tidal amplitude maps of the dominant presence of
small scale weblike structure. It yields a rich spatial pattern marked by small
scale voidlike regions, with their boundaries connected into a pervasive net-
work, yielding an ordered assembly of small-scale voids surrounded by wall-like
boundaries. The pattern is also coherent and has a rather uniform amplitude, a
direct reflection of the narrow density range of these cosmic underdensities (Cau-
tun et al., 2014). It suggests that voids are largely responsible for defining and
outlining the small-scale structure of the cosmic web, and appears to imply that
voids play a crucial role in the formation, development and spatial organisation
of the multiscale cosmic web.

By contrast, the node tidal field offers the least significant contribution to
the tidal field. Even more so than in the case of the corresponding force field,
the node induced tides define a spatial distribution that is highly localised in
the immediate vicinity of the cluster nodes. The field does not contain a clearly
defined structure, and has the appearance of a random set of tidal monopoles,
with a field strength falling off like r−3.

5.6.3 Tidal field strength: statistical analysis

For a quantitative judgement over the relative and absolute role of the induced
tidal fields in the cosmic web, we turn to a similar assessment as in the case
of the cosmic web force field, in terms of the probability functions for the total
and relative tidal force field. Overall, we find a similar hierarchy in tidal force
dominance as that in the case of the force field. However, filaments are far less
dominant in the tidal field than in the force field. Walls, and in particular voids,
have a considerably larger impact in setting the tides in the Universe. By contrast,
nodes do not have any influence outside their immediate vicinity they , despite
their high density contrast sometimes in excess of a thousand.

The top panel of figure 5.17 compares the pdf of the amplitude of the tides
generated by the individual cosmic web components. The amplitude |T |CWM

tot is
given in units of the average amplitude of the total field, σ (|T |). The distribution
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Figure 5.17: Cosmic Web Tidal Field: Strength Inventory. Top panel: The dis-
tribution of |T |CWM|/ |T |tot| for the different components of the cosmic web. This
is the distribution for the entire field. Bottom four panels: the distribution of
|T |CWM|/ |T |tot| for the different components of the cosmic web. Per panel the pdf
for cosmic web component CWM is plotted, within three different environments:
filaments (blue), voids (yellow), walls (green). Centre left: filament induced tidal
field. Centre right: void induced tidal field. Bottom left: wall induced tidal field.
Bottom right: cluster induced tidal field.
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Figure 5.18: Cosmic Web Tidal Field: Strength Inventory by Cosmic Web envi-
ronment. The panels show the pdf of the induced tidal field |T |CWM/ |T |tot by each
of the four cosmic web components CWM in the different cosmic web environ-
ments. The different colours represent the different components: filament tidal
field (blue), void induced tidal field (yellow), wall induced tidal field (green) and
cluster node induced tidal field (magenta). Top left panel: total tidal field. Top
right panel: tidal field in filaments. Bottom left panel: tidal field in voids. Bottom
right panel: tidal field in walls.

of the amplitude of the induced tidal fields shows a substantial difference be-
tween the various components. Voids are by far the most ubiquitous components
in the medium range of tidal values, in between 0.15 < |T |norm < 0.5. This is a
clear reflection of their substantial tidal imprint, as we have already noticed in
the amplitude maps, and the fact that they occupy a major fraction of the cosmic
volume.

Walls and filaments have a major presence at low tidal amplitudes, with a
mode near Tnorm ≈ 0.1, a reflection of the rapid falloff towards low tidal strengths
outside of their own realm. However, both have a long tail towards high tidal
values, ie. for Tnorm > 0.5. It even leads to an average value substantially higher
than that for voids, as may be seen in table 5.3. The filament tail reaches the
highest tidal values, confirming the visual impression of figure 5.16, with the
walls remaining at more moderate tidal values. The high tidal values for these
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Table 5.3: Tidal field statistics. The middle two columns show the mean tidal
force ratio for the different components of the cosmic web using either global or
local normalisation. Note the direction dependence in the ratio |T |CWM/ |T |tot and
|T |CWM/ |T |tot. The fourth column shows the percentage of the volume where each
component is larger than all other components.

Component Global [%] Local [%] Largest in [%]
Filaments 65.3 51.5 48.5

Voids 26.9 45.2 41.0
Nodes 3.5 3.0 0.1
Walls 34.9 36.2 10.4

structures are a direct reflection and manifestation of the corresponding mass
concentration in lower dimensionless geometric structures, i.e. of their elongated
and flattened geometry. In turn, these are the result of their formation driven by
the gravitational contraction induced by these anisotropic forces.

Telling is also the conclusion that quantitatively cluster nodes play only a
minor role in setting the overall tidal force field. In most of the cosmic volume
the nodes take care of only minor tidal values. The fact that their tidal pdf has
a very long but low tail hints at their dominance in the minute regions of their
immediate neighbourhood, but nowhere else.

Upon assessing in which environments the various component tidal influ-
ences hold sway, we notice substantial differences in the case of voids and fila-
ments, far less so for walls and cluster nodes. Overall, the wall and node contri-
butions to the tidal inventory of the cosmic web appear to be far less dependent
on location than that of filaments and voids. For the nodes this is largely because
of their spatially severely limited influence.

Evidently, the relative filament and void influence are highly dependent on
their location in the cosmic web. The four panels in figure 5.17 show the distri-
bution of the relative filament, void, cluster and wall tidal contribution in either
filaments (purple), void (orange) or wall (green) environments. The top right-
hand panel reveals the dominance of the filamentary induced tides within the
realm of the filaments themselves, with the related panels for voids and walls
indicating only a minor influence of these structures within filaments. Mean-
while, the tidal influence of voids appears to be largely restricted to that in voids
themselves. Walls hardly ever are a dominant tidal source, even not within walls
themselves, although they always appear to represent an omnipresent minor in-
fluence.

The latter implies that the dynamics of filaments is largely propelled by the
filamentary network itself. This is emphasised in the accompanying panels in fig-
ure 5.18, which for each of the cosmic web environments shows the distribution
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of the relative tidal impact by filaments, walls, voids and cluster nodes. Within
filaments (top righthand panel), tidal forces are mostly due to the influence of fil-
aments themselves, with a moderate but substantially weaker influence by walls,
and far less by voids and cluster nodes. The moderate influence by walls is an
expression of the close spatial and geometric relation between the anisotropic
filamentary and wall-like elements in the cosmic web.

Void regions show a more chequered tidal image. From the bottom lefthand
panel of figure 5.18, we see that within voids, the tidal forces induced by the voids
themselves represent a major influence, usually taking care of up to 40− 50% of
the tidal force field. Nonetheless, the impact of the surrounding filaments re-
mains important and often is even dominant (the long tail of the pdf). To a lesser
extent this is also true for the walls. This often concerns the outer parts and
boundary regions of the voids, where the dynamical influence of the higher den-
sity of filaments rapidly takes over the gravitational influence of the underdense
voids. It emphasises the observation seen earlier with respect to the gravitational
force field, the fact that the dynamics and dynamical evolution of voids cannot
be understood without taking into account the external influence by in particular
filaments.

5.6.4 Tidal field alignment

Given the notion that the elongated filamentary ridges and flattened walls in
the cosmic web are the result of the tidally induced deformation of primordial
matter concentrations, we should recognise this in the existence of an alignment
of filaments and walls with respect to the tidal force field. To assess to what
extent structures are aligned, we include a rough appraisal of the orientation of
structures in the cosmic web with the tidal eigenvectors.

At each location we measure the alignment between the local geometry of the
mass distribution and the tidal force. To this end we determine the orientation
between the eigenvectors of the local tidal tensor and the eigenvectors of local
inertia tensor. The latter is represented by the Hessian H(x) of the density field

Hij (x) =
∂2∆(x)
∂xi∂xj

. (5.23)

The eigenvectors of the Hessian are ê1, ê2 and ê3, with corresponding eigenvalues

e1 > e2 > e3 (5.24)

|e| =
√
e21 + e22 + e23 . (5.25)

A schematic diagram indicating the eigenvectors, of both tidal and inertia
tensor, with respect to an elongated filament is shown in figure 5.19. Our align-
ment analysis investigates the orientation between the largest - compressional -
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tidal eigenvector, T̂1 and the inertia eigenvector along the ridge of the filament,
ie. the smallest density Hessian, ê3. In a perfectly aligned setting, the compres-
sional tidal eigenvector T̂1 would be expected to be perpendicular to the fila-
ment’s ridge, and hence to ê3, implying an inproduct

cos(θ) = T̂1 · ê3 = 0 . (5.26)

On the other hand, in the absence of any correlation between the shape of the
structure and the tidal field, the orientation θ between T̂1 and ê3 would be ran-
dom and the distribution of µ = cosθ) entirely uniform (flat).

While the diagram in figure 5.19 relates to filaments, similar geometric con-
siderations also hold for walls and voids. In the case of walls, ê3 is one of the
two eigenvectors directed along the plane of a wall, while T̂1 is the compres-
sional tidal component, ideally directed perpendicular to the wall. For voids,
the compressional tidal component T̂1 is expected to be directed along the radial
direction of the void (see eqn. 5.22). To first approximation, inside voids the den-
sity hardly varies along radial shells, so that the density Hessian eigenvector ê3 is
oriented along the transverse direction of the void.

The distribution of the orientation angle cos(θ) between T̂1 and ê3 for the
different cosmic web environments is shown in the four panels of figure 5.20. For
the entire field, as well as for the void, filament andwall environments, the panels
depict the orientation pdf for the compressional component of the complete tidal
force T̂1, as well as for the corresponding compressional components for each of
the cosmic web components CWM, T̂1.

All panels reveal a substantial level of alignment between the compressional
tidal force and the local geometry of the environment. The distribution functions
peak strongly towards µ = cos(θ) = 0, ie. we find a strongly perpendicular ten-
dency. The one major exception is that for the node induced tidal force, which in
all environments shows a mere weak alignment. It is a manifestation of the weak
cluster node induced tidal field throughout the entire volume. With respect to
filaments and voids the following observations are made:

• Filaments
Inside filaments, the alignment between tide and geometry can be almost
exclusively ascribed to the the filament induced tidal force. To a lesser ex-
tent, the filament induced tide is responsible for a major share of alignment
in walls, confirming yet again the strong structural bond between filaments
and walls. Hence, the filament induced tides are not only dominant with re-
spect to their amplitude and strength, but also with respect to their orienta-
tion and dynamical impact. On the other hand, we also see that even within
filamentary environments, the filament induced tides do not account for all
alignments. It hints at the still significant influence by the other cosmic web
components, in particular voids and walls.
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Figure 5.19: Tidal field & Cosmic Web aligment. Diagram illustration of (ide-
alized) orientations inertial (Hessian density field) and tidal eigenvectors with
respect to an elongated filament. Indicated is the orientation of the larges tidal
eigenvector (T1) and that of the smallest inertia eigenvector ê3, which is aligned
along the principal ridge of the filament.

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
D

F

Complete Field

0.6

0.8

1.0

1.2

1.4

1.6

In Voids

0.0 0.2 0.4 0.6 0.8 1.0

T̂1 · ê3

0.5

1.0

1.5

2.0

2.5

3.0

P
D

F

In Filaments

0.0 0.2 0.4 0.6 0.8 1.0

T̂1 · ê3
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Figure 5.20: Tidal field & Cosmic Web aligment. The pdf of the alignment angle
cosθ = T̂1 ·ê3 between the largest (compressional) tidal eigenvector and the inertia
tensor direction along the filament ridge, ê3. The four panels show the pdf curves
for the tidal field induced by the entire mass distribution and the specific tidal
fields induced by the four morphological components CWM in four different
cosmic web environments. Black curve: tidal field induced by entire mass distri-
bution; blue curve: filament induced tidal field; orange curve: void induced tidal
field; green curve: wall induced tidal field; magenta curve: cluster node tidal
field. The environments in the four panels: entire field (top lefthand panel); void
regions (top righthand panel); filament regions (bottom lefthand panel); wall re-
gion (bottom righthand panel). Note the different range for the vertical axis of
the four panels.
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Right frame: redshift evolution of the global average tidal field fraction F CWM =
|T |CWM/ |T |total for the tide induced by cosmic web component CWM.

• Voids
A most interesting finding is that the mass distribution inside voids is more
strongly aligned with the tidal field than that in the overall field (top right-
hand frame fig:tidangd). To a large extent this is to be ascribed to the strong
alignment with the tidal force induced by the void itself. Also, we find that
the latter has only a weak alignment with the ridge of filaments (bottom
righthand frame fig. 5.20), and a mere moderate alignment with the plane
of walls (top righthand frame fig:tidangd). In all, it confirms the earlier
impression of the voids tidally dominating the more tenuous parts of the
cosmic web.

5.7 Cosmic Web Force & Tidal Evolution

The present study has concentrated predominantly on the dynamical structure
of the cosmic web at the current cosmic epoch, z = 0. In order to develop more
definitive conclusions on the buildup of structure by the force and tidal influence
of the various cosmic web components, it will be imperative not only to study the
dynamics at the current time, but also to investigate their behaviour over time.
While in an upcoming study we address the dynamical evolution of the cosmic
web in detail, we may get a global impression by evaluating global averages of
the force and tidal amplitudes as a function of redshift z.

We follow the evolution of the mean (normalized) force and tide contribu-
tion by the various cosmic web components - filaments, walls, voids and cluster
nodes. To this end, for each redshift z, at each location x we determine the frac-
tional contribution F CWM(x, z) by a component CWM to the total force or tide
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amplitude Atotal(x, z),

F CWM(x, z) =
ACWM(x, z)
Atotal(x, z)

. (5.27)

By normalizing with respect to the average (total) force or tide amplitude at red-
shift z, we compensate for the time evolution of the general force and tidal fields.
We average over all locations x to obtain a global fractional average F̃ (z) at red-
shift z.

Figure 5.21 plots the redshift evolution of the fractional force contributions
by cosmic web components CWM (lefthand panel) and corresponding fractional
tidal amplitude contributions (righthand panel), over a redshift range 0 < z < 4.
On the basis of these rudimentary global averages, a few generic conclusions may
be drawn with respect to the evolution of cosmic web dynamics.

Over the entire redshift range, filaments are consistently by far the most dom-
inant cosmic web component, with respect to both force and tidal fields. Up to a
redshift z ≈ 0.5−1, the influence of filaments is increasing, partially the reflection
of the growth of the filament population and mass as cosmic structure develops
(see e.g. Cautun et al., 2014). The influence of filaments stabilises after this red-
shift, and may even decrease somewhat. It is tantalising to identify this with the
universe transiting from a matter-dominated to a dark energy dominated regime,
and the corresponding global stemming of structure growth as the Universe en-
ters an exponential de Sitter expansion phase. Another factor may be that of the
steep emergence and growth of massive cluster nodes, whose fractional force and
tidal influence we see rising steeply after z ≈ 1 (see fig. 5.21, magenta curve). This
goes along with the accretion of large amounts of mass along dense filamentary
branches connecting the filamentary arteries with the cluster nodes, and the sub-
sequent increasing force influence of the nodes. At high redshifts the influence
of cluster nodes is almost negligible, as their hierarchical buildup has not yet
formed virialized clusters of comparable mass.

Arguably the most interesting evolutionary trend is seen for the void popula-
tion. The force and tidal field influence of voids turns out to be even more promi-
nent at higher redshifts than it is today. To some extent this may seem surprising.
Because voids are smaller and less empty at higher redshifts, at first one might
expect them to have a weaker influence over the cosmic mass distribution. On
the other hand, the filamentary and wall-like skeleton of the cosmic web is also
developing rapidly at high redshifts, and represents less mass at those redshifts.
Relatively speaking, voids may therefore be more prominent at high redshifts.
The details of the dynamical influence of voids, of the induced mass migration
out of their interior, within the context of the hierarchically evolving void popu-
lations (Sheth & van de Weygaert, 2004; Aragon-Calvo & Szalay, 2013), therefore
need further investigation. This is the subject of a related upcoming study.

Finally, walls offer a chequered view of force and tidal evolution. Their tidal
influence appears to remain almost constant throughout time. Their force evo-
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lution, however, appears to follow a similar downward trend as that seen for the
void population. It may reflect a proportionally higher mass content at higher
redshift, a consequence of the flow of mass from void troughs, via walls towards
filaments.

5.8 Summary and Discussion

The cosmic web emerges at the transition between the linearly evolving cosmic
matter distribution on large cosmological scales, and the highly nonlinear realm
on small scales where we find matter assembled in virialized halos(Bond et al.,
1996; van deWeygaert & Bond, 2008a; Cautun et al., 2014; Libeskind et al., 2018).
At this transition scale, we see the emergence of complex spatial structure in the
shape of an intricate weblike pattern. Long elongated filaments and flattened
tenuous planar walls form the boundaries of near-empty void regions and defined
a pervasive interconnected network, whose dense compact nodes are the sites
where we find massive virialized halos.

With the cosmic web forming the manifestation of this key dynamical transi-
tion in the organisation of the cosmicmatter distribution, it is essential to develop
a more profound insight and understanding of the dynamics driving the buildup
of cosmic structure, of the induced migration flows, and the gravitational influ-
ence of the various constituents of the cosmic web on these processes. This will
bear upon a range of major cosmological issues. Prime is a more fundamental
understanding of the formation and assembly of the cosmic web itself, and its
relation to the primordial mass distribution (see e.g. Feldbrugge et al., 2018b;
Feldbrugge & van de Weygaert, 2024). Of major current interest is the influ-
ence of the large scale environment on the formation and evolution of galaxies,
of which the most widely recognised factor is that of the generation of angular
momentum of galaxies by tidal torqueing by the same tidal forces that shape the
filaments and walls in the cosmic web (e.g. Hoyle, 1949; White, 1984; Porciani
et al., 2002a,b; Jones & van de Weygaert, 2009; Codis et al., 2012, 2015; Gane-
shaiah Veena et al., 2019). Of increasing interest is also the potential information
content of the intricate cosmic web structure on the value of cosmological param-
eters and the properties of dark matter and dark energy. Over the recent years
in particular the structure and kinematics of cosmic voids have received ample
attention for the potentially high precision with which they may reflect the char-
acter and value of dark energy (see e.g. Lee & Park, 2009; van de Weygaert &
Platen, 2011; Lavaux & Wandelt, 2012; Bos et al., 2012; van de Weygaert, 2016;
Pisani et al., 2019).

The present study is the first stage in a systematic investigation of the detailed
dynamics involved in the emergence and assembly of the cosmic web and its var-
ious morphological components. We assess the force field and tidal field induced
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by filaments, walls, cluster nodes and voids, and investigate in how far they con-
tribute, and dominate, the gravity and tides in the various regions of the cosmic
web. It facilitates an in-depth investigation of the role of the different morpho-
logical components of the cosmic web, and its environmental dependence, in
driving the gravitational evolution driven formation and evolution of the largest
structures in the universe.

The dynamical inventory study is based on the redshift z = 0 structure in a
5123 large ΛCDM dark matter only N-body simulation in a (300h−1Mpc) box.
At each location in the simulation box the gravitational force and tidal tensor is
computed for the entire mass content in the simulation volume, as well as sep-
arate for the force and tides generated by filament regions, walls, void regions
and cluster nodes separately. In the current study this is based on a brute-force
direct summation over the mass elements residing in the various identified mor-
phological structures. Given the morphological identity of each mass element,
we are able to do the gravitational force and tidal field analysis separately for the
various cosmic web regions. Hence, it allows us to study in how far the dynam-
ics of voids is influenced by the surrounding filaments or, reversely, in how far
the gravitational force and tidal forces in filaments are feeling the presence of
the surrounding voids. In addition, it enables an evaluation of the reach of void
induced forces and tides, the scales over which filaments dominate, and a wide
range of related issues.

For the identification of the cosmic web structures, we invoke the den-
sity field NEXUS+ multiscale morphological formalism (Aragón-Calvo et al.,
2007b,a, 2010; Cautun et al., 2013, 2014), which delineate the filament, void,
wall and node regions. NEXUS+ is the highest dynamic range version of the
Scale Space MMF/Nexus pipeline, unique in its combination of geometric and
dynamical criteria for the morphological classification and that of taking into
account of the multiscale nature of the cosmic matter distribution. It enables us
to identify structures over a wide spectrum of scales and densities, and hence
assures an optimal assessment of the multiscale aspects of cosmic web dynamics.
The NEXUS formalism assigns to each location in the simulation volume the
appropriate morphology - filaments, walls, void or cluster node - following a
parameter-free evaluation at the proper physical scale of the locally dominant
feature.

The systematic inventory of cosmic web dynamics yielded insights that con-
firm existing assumptions. More tantalising are new and surprising insights with
respect to the role of voids and cluster nodes. Amongst the conclusions based on
the presented force and tide inventory are:

• The gravitational force fields generated by the distinct cosmic web compo-
nents differ significantly from each other. The gravitational fields induced
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by filaments, voids, walls and cluster nodes have markedly and systemati-
cally dissimilar characters. The overall amplitude of the gravitational force,
their range, and spatial structure and pattern are quite dissimilar. In terms
of the amplitude of the induced forces, there is a clear hierarchy: filaments
are by far the most dominant and powerful force, followed by voids, only
then - surprisingly - by cluster nodes, followed by walls.

• At nearly every location, the total gravitational force is the combination of
the contributions by several cosmic web components. The important im-
plication is that it is hardly possible to describe the dynamics and develop-
ment of a structure as an isolated object. In general the gravitational influ-
ence is the result of the interplay between the several contributions. The
only exceptions may be the force field in the interior of the most promi-
nent filaments and in and around the immediate vicinity of massive clus-
ter nodes. Yet, over most of the filamentary network also the influence of
nearby voids should be taken into account, while the dynamical evolution
of walls cannot be understood at all without taking into account the impact
by the nearly filaments and voids. It certainly is true without any exception
for all void regions, whose dynamics cannot be understood on the basis of
their underdense interior but should also take into account the even more
dominant exterior influence by the nearby filaments.

• Filaments dominate the gravitational force field over nearly the entire cos-
mic volume, with the exception of the immediate vicinity of the massive
cluster nodes. On average, they are responsible for more than 50% of the
exerted gravitational force at any location. Filaments’ exert their influence
over a large spatial range.

• While voids turn out to represent a sizeable gravitational influence over
nearly the entire cosmic volume, they hardly dominate anywhere, even
within their own interior. Instead, at a large fraction of space they are the
second gravitational influence after filaments.

• Voids have a limited spatial range over which they wield their gravitational
influence. The spatial pattern defined by the void generated gravitational
field is one of a segmented volume, each segment surrounding a locally
strong repulsive density trough (with radii up to 50 h−1Mpc. Zooming in
on individual void regions shows their superhubble expanding effect over
their interior and up to their overdense boundary. Within the interstitial
regions between voids, i.e. for their filamentary and planar boundaries,
their gravitational impact declines rapidly to very low levels.

• Despite the mostly segmented nature of the void induced force field, still
we find a residual large scale void force field. This is a manifestation of



5

246 Chapter 5. Cosmic Web Dynamics: Forces and Strains

the multiscale nature of the void population (see Sheth & van de Wey-
gaert, 2004; Aragon-Calvo & Szalay, 2013), a direct result of its hierarchi-
cal evolution and which has recently been detected in the observational
Cosmicflows-3 peculiar velocity field (Courtois et al., 2023).

• A complete dynamical description of voids in terms of isolated expanding
underdense regions is not representative, The evolution of voids depends
strongly on the exterior mass distribution. Void dynamics is predominantly
a combined effect Of the induced superhubble expansion by voids them-
selves and the force and tidal influence of the the surrounding filaments
(and, if in their near vicinity, the nearby cluster nodes). It shows that any
consideration of void dynamics in terms of isolated almost spherically ex-
panding regions needs a fundamental revision: the dynamics of voids can-
not be understood without taking into account the gravitational and tidal
influence of the environment.

• A surprising finding is that of the rather low dynamical influence by mas-
sive cluster nodes. Both the gravitational force induced by cluster nodes,
as well as the corresponding tidal force, are only significant in and in the
immediate surroundings of the cluster nodes, out to a radius of ≈ 5h−1Mpc.
Because of their rather limited gravitational influence, they only wield a
minor impact on the structure of the cosmic web.

• With respect to the corresponding gravitational tides, the situation in terms
of strength is less outspoken than in the case of the gravitational force. Still,
filaments are the strongest source of gravitational tides. However, voids,
and even walls, yield a significant additional and alternative tidal influence.
While the tidal impact of filaments has a predominantly large scale charac-
ter, strongly correlated with the main elongated arteries in the cosmic web,
walls and in particular voids add an essential small-scale aspect of the tidal
field that is to be identified with the multiscale nature and structure of the
cosmic web.

• The tidal field generated by filaments is largely a large-scale phenomenon,
reflecting the outline of the most massive and prominent arteries in the cos-
mic web. The multiscale structure of the cosmic web can hardly be recog-
nised in the filament induced tidal field. Filaments are the predominant
source for the tidal forces inside the filaments themselves, as a result of
their overwhelming strength within the filamentary ridges of the cosmic
web.

• Along the filamentary ridges, the tidal field generated by filaments is rather
inhomogeneous and patchy, marked by a fluctuating trend between high
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amplitude and low amplitude regions along a filament’s ridge. This is a
direct manifestation of the rather strong mass density variations along a fil-
ament’s ridge (see e.g. Cautun et al., 2014). With respect to the orientation
of the tidal force field along filaments, we see a coherent pattern of aligned
compressional tidal bars along the ridge of a filament.

• Voids are the dominant source of tidal influence within their interior. As
voids represent the major share of a cosmic volume, void assume a major
organising role in the shaping of the cosmic matter distribution.

• An interesting finding is the remarkable spatial pattern in the void induced
tidal amplitude map: the void tidal field defines a coherent rather uniform
cellular pattern over the entire volume, dominated by the small-scale voids
in the multiscale buildup of the cosmic web. The void tidal field appears
to trace the cosmic web down to even the most tenuous structures found
inside voids (also see Aragon-Calvo & Szalay, 2013, with respect to a similar
observation wrt. the interior void velocity field).

• The finding that the spatial organisation of the cosmic web is most readily
expressed in the void tidal field suggests voids to be seen as the organisers of
the cosmic web. It is confirmed by the orientation of the void induced tidal
field (see the case studies in fig. 5.15): the compressional component ap-
pears to trace the more tenuous parts of the cosmic web, suggesting them to
be responsible for the shaping of the tenuous walls and filaments that form
the boundaries of the small voids. Analysis of the alignment between tidal
field and mass distribution underlines this conclusion, revealing a stronger
alignment within the interior of voids than in the overall cosmic web.

• The tidal force field induced by the wall population is more noticeable than
its gravitational force field, arguably the reflection of their intimate rela-
tionship with the filamentary spine of the cosmic web. Both are the prod-
uct of the anisotropic force field emanating from the inhomogeneous mass
distribution, i.e. from the tidal force field. The wall tidal field follows the
large scale spatial outline seen in the filament tidal field, tracing the heavy
arteries and connecting sheets in the cosmic web. Yet, it also reflects - more
faintly - the small-scale cellular pattern seen in the void induced tidal field.

While most of our analysis concerns the current cosmic matter distribution, a
global statistical overview shows that the overall conclusions concerning strength
of the gravitational force and tidal forces generated by the various cosmic web
components pertains over a rather wide range of redshifts, at least from z = 4
down to z = 0.
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In summary, we find that filaments are the main drivers of the dynamical evo-
lution of the cosmic web. This may not be surprising, given filaments represent
at least ≈ 50% of the mass in the universe, concentrated in rather compact elon-
gated ridges pervading the entire universe. More revealing is the finding of the
prominent role of voids in the dynamics of the cosmic web. When looking at the
cause of anisotropic structure, of which tidal fields are the main agent, we find
that voids play an important role. In other words, they can be seen as the main
spatial organisers of the mulitscale cosmic web.

This work has the intention to open the window on to the intricate interplay
of the various gravitational influences in the cosmic web. It is the starting point of
a more extensive program. Several immediate and evident practical and compu-
tational improvements of the current study are foreseen. These include a more
efficient force and tidal tensor computation that would enable a more detailed
statistical study and the extension of our study to large cosmological simulations
including gas dynamics, baryonic physics and galaxy formation. More funda-
mental will be the astrophysical and cosmological issues that should be addressed
on the basis of the new insights gained from the present inventory of cosmic web
dynamics. Amongst a wide range of related issues, two prominent aspects are the
following.

The most outstanding issue to be addressed is that of the dynamics and evo-
lution of cosmic voids. In a follow-up study the multiscale structure of the void
force and tidal field, as well as the generated mass flows, will be analysed armed
with the insights obtained in the current study. The low-density environment
in voids imply the major influence of external gravitational and tidal influences.
As demonstrated in the present study, for most void configurations it is essen-
tial to include the role of the surrounding filamentary cosmic web if we seek to
understand and exploit their structure and flow fields. This will alter our under-
standing of galaxy formation and evolution within void environments, given for
example the impact on matter accretion. It will substantially impact on the use
of voids as cosmological probes, given the fact that their internal structure and
dynamics will even more highly altered by the surrounding cosmic web structure
than by cosmological factors.

Another important observable effect of the cosmic web is that on the shape
and rotation of galaxies. While it has long been recognised that especially the
strong tidal forces exerted by (proto)filaments are the principal source of rota-
tion for many galaxies, many recent studies have uncovered additional processes
such as the anisotropic accretion along filaments that may seriously affect the
outcome. In a slightly different context, the tidal forces induced by the cosmic
web yield intrinsic alignments of gravitationally lensed background galaxy im-
ages and their interpretation within the cosmological context. Given the current
study’s finding that the tidal force field is highly sensitive to the small-scale as-
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pects of the cosmic web, highlighting the presence of small voids and walls that
are observationally difficult to detect, it may be necessary to focus in more de-
tail on the intricate dynamical structure of the cosmic web and its effect on to
compensate for its impact.

Acknowledgements

We are grateful to Marius Cautun and Bernard Jones for their willingness to
share the Nexus code for this project, and to Joop Schaye for helpful suggestions.
Many decades ago Vincent Icke taught RvdW about the importance of voids, the
present study is a token of gratitude for this wise lesson. RvdW owes Dick Bond
for emphasizing the key role of tidal forces to understand the formation of the
cosmic web. Finally, RvdW also acknowledges SimonWhite for a highly motivat-
ing remark that inspired a major share of the current study. This work is partly
funded by research programme Athena 184.034.002 from the Dutch Research
Council (NWO).

Data Availability

All data presented in this paper will be shared upon reasonable request to the
corresponding author.



5

References

Abel T., Hahn O., Kaehler R., 2012, MNRAS, 427, 61
Alam S., Paranjape A., Peacock J. A., 2024, MNRAS, 527, 3771
Alpaslan M., et al., 2014, MNRAS, 438, 177
Angulo R. E., Zennaro M., Contreras S., Aricò G., Pellejero-Ibañez M., Stücker J., 2021, MNRAS, 507,

5869
Aragon-Calvo M. A., Szalay A. S., 2013, MNRAS, 428, 3409
Aragon-Calvo M. A., Yang L. F., 2014, MNRAS, 440, L46
Aragón-Calvo M. A., Jones B. J. T., van de Weygaert R., van der Hulst J. M., 2007a, A&A, 474, 315
Aragón-Calvo M. A., van de Weygaert R., Jones B. J. T., van der Hulst J. M., 2007b, ApJ, 655, L5
Aragón-Calvo M. A., van de Weygaert R., Jones B. J. T., 2010, MNRAS, 408, 2163
Awad P., et al., 2023, MNRAS, 520, 4517
Bernardeau F., van de Weygaert R., Hivon E., Bouchet F. R., 1997, MNRAS, 290, 566
Bocquet S., Heitmann K., Habib S., Lawrence E., Uram T., Frontiere N., Pope A., Finkel H., 2020, ApJ,

901, 5
Bond J. R., Kofman L., Pogosyan D., 1996, Nature, 380, 603
Bonjean V., Aghanim N., Salomé P., Douspis M., Beelen A., 2018, A&A, 609, A49
Bos E., 2016, PhD thesis, University of Groningen
Bos E. G. P., van de Weygaert R., Dolag K., Pettorino V., 2012, MNRAS, 426, 440
Cautun M. C., van de Weygaert R., 2011, The DTFE public software: The Delaunay Tessellation Field

Estimator code
Cautun M., van de Weygaert R., Jones B. J. T., 2013, MNRAS, 429, 1286
Cautun M., van de Weygaert R., Jones B. J. T., Frenk C. S., 2014, MNRAS, 441, 2923
Cen R., 1997, ApJ, 479, L85
Codis S., Pichon C., Devriendt J., Slyz A., Pogosyan D., Dubois Y., Sousbie T., 2012, MNRAS, 427,

3320
Codis S., Pichon C., Pogosyan D., 2015, MNRAS, 452, 3369
Colless M., et al., 2003, arXiv e-prints, pp astro–ph/0306581
Courtois H. M., et al., 2023, A&A, 673, A38
Dietrich J. P., Werner N., CloweD., Finoguenov A., Kitching T., Miller L., Simionescu A., 2012, Nature,

487, 202
Efstathiou G., Jones B. J. T., 1980, Comments on Astrophysics, 8, 169
Einasto J., 1977, in Problems of Observational and Theoretical Astronomy. pp 26–43
Elek O., Burchett J. N., Prochaska J. X., Forbes A. G., 2020, arXiv e-prints, p. arXiv:2009.02441
Elek O., Burchett J. N., Prochaska J. X., Forbes A. G., 2022, arXiv e-prints, p. arXiv:2204.01256
Feldbrugge J., van de Weygaert R., 2023, J. Cosmology Astropart. Phys., 2023, 058
Feldbrugge J., van de Weygaert R., 2024, arXiv e-prints, p. arXiv:2405.20475
Feldbrugge J., van de Weygaert R., Hidding J., Feldbrugge J., 2018b, J. Cosmology Astropart. Phys.,

2018, 027
Feldbrugge J., van de Weygaert R., Hidding J., Feldbrugge J., 2018a, J. Cosmology Astropart. Phys.,

2018, 027
Feldbrugge J., Yan Y., van de Weygaert R., 2023, MNRAS, 526, 5031

http://dx.doi.org/10.1111/j.1365-2966.2012.21754.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.427...61A
http://dx.doi.org/10.1093/mnras/stad3423
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527.3771A
http://dx.doi.org/10.1093/mnras/stt2136
https://ui.adsabs.harvard.edu/abs/2014MNRAS.438..177A
http://dx.doi.org/10.1093/mnras/stab2018
https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.5869A
https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.5869A
http://dx.doi.org/10.1093/mnras/sts281
https://ui.adsabs.harvard.edu/abs/2013MNRAS.428.3409A
http://dx.doi.org/10.1093/mnrasl/slu009
https://ui.adsabs.harvard.edu/abs/2014MNRAS.440L..46A
http://dx.doi.org/10.1051/0004-6361:20077880
https://ui.adsabs.harvard.edu/abs/2007A&A...474..315A
http://dx.doi.org/10.1086/511633
https://ui.adsabs.harvard.edu/abs/2007ApJ...655L...5A
http://dx.doi.org/10.1111/j.1365-2966.2010.17263.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.408.2163A
http://dx.doi.org/10.1093/mnras/stad428
https://ui.adsabs.harvard.edu/abs/2023MNRAS.520.4517A
http://dx.doi.org/10.1093/mnras/290.3.566
https://ui.adsabs.harvard.edu/abs/1997MNRAS.290..566B
http://dx.doi.org/10.3847/1538-4357/abac5c
https://ui.adsabs.harvard.edu/abs/2020ApJ...901....5B
http://dx.doi.org/10.1038/380603a0
https://ui.adsabs.harvard.edu/abs/1996Natur.380..603B
http://dx.doi.org/10.1051/0004-6361/201731699
https://ui.adsabs.harvard.edu/abs/2018A&A...609A..49B
http://dx.doi.org/10.1111/j.1365-2966.2012.21478.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.426..440B
http://dx.doi.org/10.1093/mnras/sts416
https://ui.adsabs.harvard.edu/abs/2013MNRAS.429.1286C
http://dx.doi.org/10.1093/mnras/stu768
https://ui.adsabs.harvard.edu/abs/2014MNRAS.441.2923C
http://dx.doi.org/10.1086/310587
https://ui.adsabs.harvard.edu/abs/1997ApJ...479L..85C
http://dx.doi.org/10.1111/j.1365-2966.2012.21636.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.427.3320C
https://ui.adsabs.harvard.edu/abs/2012MNRAS.427.3320C
http://dx.doi.org/10.1093/mnras/stv1570
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452.3369C
http://dx.doi.org/10.48550/arXiv.astro-ph/0306581
https://ui.adsabs.harvard.edu/abs/2003astro.ph..6581C
http://dx.doi.org/10.1051/0004-6361/202245578
https://ui.adsabs.harvard.edu/abs/2023A&A...673A..38C
http://dx.doi.org/10.1038/nature11224
https://ui.adsabs.harvard.edu/abs/2012Natur.487..202D
https://ui.adsabs.harvard.edu/abs/1980ComAp...8..169E
http://dx.doi.org/10.48550/arXiv.2009.02441
https://ui.adsabs.harvard.edu/abs/2020arXiv200902441E
http://dx.doi.org/10.48550/arXiv.2204.01256
https://ui.adsabs.harvard.edu/abs/2022arXiv220401256E
http://dx.doi.org/10.1088/1475-7516/2023/02/058
https://ui.adsabs.harvard.edu/abs/2023JCAP...02..058F
http://dx.doi.org/10.48550/arXiv.2405.20475
https://ui.adsabs.harvard.edu/abs/2024arXiv240520475F
http://dx.doi.org/10.1088/1475-7516/2018/05/027
https://ui.adsabs.harvard.edu/abs/2018JCAP...05..027F
http://dx.doi.org/10.1088/1475-7516/2018/05/027
https://ui.adsabs.harvard.edu/abs/2018JCAP...05..027F
http://dx.doi.org/10.1093/mnras/stad2777
https://ui.adsabs.harvard.edu/abs/2023MNRAS.526.5031F


5

References 251

Florack L., ter Haar Romeny B., Koenderink J., Viergever M., 1992, Image and Vision Computing, 10,
376

Forero-Romero J. E., Hoffman Y., Gottlöber S., Klypin A., Yepes G., 2009, MNRAS, 396, 1815
Frieman J. A., Turner M. S., Huterer D., 2008, ARA&A, 46, 385
Ganeshaiah Veena P., Cautun M., van de Weygaert R., Tempel E., Jones B. J. T., Rieder S., Frenk C. S.,

2018, MNRAS, 481, 414
Ganeshaiah Veena P., Cautun M., Tempel E., van de Weygaert R., Frenk C. S., 2019, MNRAS, 487,

1607
Ganeshaiah Veena P., Cautun M., van de Weygaert R., Tempel E., Frenk C. S., 2021, MNRAS, 503,

2280
Hahn O., Carollo C. M., Porciani C., Dekel A., 2007, MNRAS, 381, 41
Hahn O., Teyssier R., Carollo C. M., 2010, MNRAS, 405, 274
Hidding J., van de Weygaert R., Vegter G., Jones B. J. T., Teillaud M., 2012, arXiv e-prints, p.

arXiv:1205.1669
Hidding J., van de Weygaert R., Shandarin S., 2016, in van de Weygaert R., Shandarin S., Saar E.,

Einasto J., eds, IAU Symposium Vol. 308, The Zeldovich Universe: Genesis and Growth of the
Cosmic Web. pp 69–76 (arXiv:1611.01221), doi:10.1017/S1743921316009650

Hirschmann M., Dolag K., Saro A., Bachmann L., Borgani S., Burkert A., 2014, MNRAS, 442, 2304
Hoffman Y., Metuki O., Yepes G., Gottlöber S., Forero-Romero J. E., Libeskind N. I., Knebe A., 2012,

MNRAS, 425, 2049
Hoyle F., 1949. eds. Burgers, J.M. and van de Hulst, H.C. (Central Air Documents Office, Dayton)
Huchra J. P., et al., 2012, The Astrophysical Journal Supplement Series, 199, 26
Hunter J. D., 2007, Computing in Science & Engineering, 9, 90
Icke V., 1984, MNRAS, 206, 1P
Jones B., van de Weygaert R., 2009, Astrophysics and Space Science Proceedings, 8, 467
Jones B. J. T., van de Weygaert R., Aragón-Calvo M. A., 2010, MNRAS, 408, 897
Kitaura F.-S., Angulo R. E., Hoffman Y., Gottlöber S., 2012a, MNRAS, 425, 2422
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Appendix

5.A
MMF/Nexus & Cosmic Web Classification

The NEXUS suite of cosmic web identifiers represents an elaboration and exten-
sion of the original Multiscale Morphology Filter (Aragón-Calvo et al., 2007b,
2010) algorithm and was developed with the goal of obtaining a more physically
motivated and robust method. NEXUS+ is the principal representative of the
full NEXUS suite of cosmic web identifiers (see Cautun et al., 2013). These in-
clude the options for multiscale morphology identifiers on the basis of the linear
density, the logarithmic density, the velocity divergence, the velocity shear and
tidal force field. NEXUS has incorporated these options in a versatile code for
the analysis of cosmic web structure and dynamics following the realisation that
they are significant physical influences in shaping the cosmic mass distribution
into the complexity of the cosmic web.

5.A.1 Hessian Geometry and Morphological Identity

The basic setup of MMF/Nexus is that of defining a four-dimensional scale-space
representation of the input field f (x⃗). In nearly all implementations this achieved
by means of a Gaussian filtering of f (x⃗) over a set of scales [R0,R1, ...,RN ],

fRn
(x⃗) =

∫
d3k
(2π)3

e−k
2R2

n/2f̂ (⃗k)eik⃗·x⃗, (5.28)

where f̂ (⃗k) is the Fourier transform of the input field f (x⃗). The Hessian Hij,Rn
(x⃗)

of the filtered field on the scale Rn is computed in Fourier space on the basis of
the corresponding Fourier components Ĥij,Rn

(⃗k),

Hij,Rn
(x⃗) = R2

n
∂2fRn

(x⃗)
∂xi∂xj

. (5.29)

Ĥij,Rn
(⃗k) = −kikjR2

nf̂ (⃗k)e
−k2R2

n/2 .

Note that the definition for the Hessian includes the normalisation term R2
n. The

key element of the MMF/Nexus formalism is the morphological information con-
tained in the eigenvalues of the Hessian matrix, h1 ≤ h2 ≤ h3. By applying a set of
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morphology filters on these scaled eigenvalues (see Aragón-Calvo et al., 2007a;
Cautun et al., 2013) this is translated into a scale dependent environment signa-
ture SRn

(x) that represents the geometry at the corresponding scale.

5.A.2 Scale Space and Multiscale Structure

To analyse themultiscale nature of the cosmic web, the Scale-Space representation
of the cosmic mass distributions produces a sequence of copies of the data having
different resolutions (Florack et al., 1992; Lindeberg, 1994). At each location
x⃗ in the probed volume, it involves an extra dimension, scale, that yields the
eigenvalues of the Hessian filtered at the corresponding (Gaussian) scale and the
scale dependent environment signature SRn

(x).
A feature searching algorithm is applied to the combined set of scaled copies

in order to identify the scale at which, locally, we find the strongest morphologi-
cal signature. It involves the combination of the complete set of scale-dependent
environmental signatures to find the maximum signature for all scales

S(x) = max
levels n

SRn
(x). (5.30)

5.A.3 Signature & Versions

The final step in the MMF/Nexus procedure involves the use of criteria to find
the threshold signature that discriminates between valid and invalid morpho-
logical detections. Signature values larger than the threshold correspond to real
structures while the rest are spurious detections. Different implementations and
versions of the MMF/Nexus technique may differ in the definition of the thresh-
old values.

The final outcome of the MMF/Nexus procedure is a field which at each loca-
tion x⃗ specifies what the local morphological signature is, cluster node, filaments,
wall or void. The resulting field δNEXUS

j (x) is zero when the volume is not identi-
fied as cosmic web element j and is one when the volume elements is identified as
element j. Here j is either filaments, nodes or walls. In this identification we also
intrinsically include the identification for voids which is defined as the volume
elements that are neither a filament, node or wall.

Following the basic version of the MMF technique introduced by Aragón-
Calvo et al. (2007a) it was applied to the analysis of the cosmic web in simu-
lations of cosmic structure formation (Aragón-Calvo et al., 2010) and for finding
filaments and galaxy-filament alignments in the SDSS galaxy distribution (Jones
et al., 2010). The principal technique, and corresponding philosophy, has sub-
sequently been branched in several further elaborations and developments Cau-
tun et al. (2014); Aragon-Calvo & Yang (2014). Nexus (Cautun et al., 2014) has
extended the MMF formalism to a substantially wider range of physical agents
involved in the formation of the cosmic web, along with a substantially firmer
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foundation for the criteria used in identifying the various web-like structures.
MMF-2 (Aragon-Calvo & Yang, 2014) focuses with even more attention than the
basic MMF formalism on the hierarchical nature of the cosmic web, by introduc-
ing and exploiting the concept of hierarchical space.

The NEXUS suite of cosmic web identifiers represents an elaboration and ex-
tension of the original Multiscale Morphology Filter (Aragón-Calvo et al., 2007b,
2010) algorithm and was developed with the goal of obtaining a more physically
motivated and robust method. NEXUS+ is the principal representative of the
full NEXUS suite of cosmic web identifiers (see Cautun et al., 2013). These in-
clude the options for multiscale morphology identifiers on the basis of the linear
density, the logarithmic density, the velocity divergence, the velocity shear and
tidal force field. NEXUS has incorporated these options in a versatile code for
the analysis of cosmic web structure and dynamics following the realisation that
they are significant physical influences in shaping the cosmic mass distribution
into the complexity of the cosmic web.

5.A.4 NEXUS+

NEXUS+ is the density field NEXUS version with the highest dynamic range. As
input it takes a regularly sampled density field. In a first step, the input field
is Gaussian smoothed using a logFilter filter that is applied over a set of scales
[R0,R1, ...,RN ], with Rn = 2n/2R0. It produces the logarithmic density field

δ+ = log(1+ δ(x)) , (5.31)

The logarithmic density field of NEXUS+ is better equipped to take account of
the wide dynamic range of the nonlinear hierarchically evolved density field.
The nonlinear field is highly non-Gaussian, with a large part of the volume hav-
ing low-density values in combination with long high-density tails in the high-
density cluster and filament regions. It translates into a nonlinear density field
pdf that approaches a lognormal or skewed lognormal function.

For each of the included scale-space scales, NEXUS+ computes the eigenval-
ues of the Hessian matrix of the smoothed logarithmic density field. Using the
Hessian eigenvalues of these, NEXUS+ computes an environmental signature for
each volume element that characterises how close this region is to an ideal knot,
filament and wall. Then, for each point, the environmental signatures computed
for each scale are combined to obtain a scale independent signature.

In the last step, physical criteria are used to determine a detection threshold.
All points with signature values above the threshold are valid structures. For
knots, the threshold is given by the requirement that most knot-regions should
be virialized. For filaments and walls, the threshold is determined on the basis
of the change in filament and wall mass as a function of signature. The peak of
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the mass variation with signature delineates the most prominent filamentary and
wall features of the cosmic web.

The NEXUS+ algorithm performs the environment detection by applying the
above steps first to knots, then to filaments and finally to walls. Each volume
element is assigned a single environment characteristic by requiring that fila-
ment regions cannot be knots and that walls regions cannot be either knots or
filaments. The remaining regions are classified as voids.
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Nederlandse samenvatting

Wanneer men denkt aan de voorspellingen van Einsteins algemene relativiteit-
stheorie gaat de aandacht meestal naar het buigen van licht, zwarte gaten en
recent, zwaartekrachtsgolven. In deze thesis wordt er gebruikt gemaakt van een
andere voorspelling van Einstein, in dit geval voor het hele universum. Wanneer
je aanneemt dat het universum op grote schaal uniform en isotroop is, in andere
woorden, het universum is hetzelfde waar je je ook bevindt, en welke richting
je ook op kijkt, dan voorspellen de vergelijkingen van Einstein een universum
dat uitdijt of krimpt. Verder vormen er door zwaartekracht ook structuren in
het Universum. De theorie die de samenhang tussen het uitdijende heelal en de
structuren die vormen door zwaartekracht voorspelt heeft als naam kosmologie.

Introductie

Binnen de studie van kosmologie bevinden we ons op een interesant tijdstip. De
afgelopen twee decennia bijna zijn al onze kosmologische waarneming te voor-
spellen aan de hand van een het model ΛCDM. Hier staat de Λ voor donkere
energie en CDM voor koude donkere materie. Samen verzorgen deze twee com-
ponenten rond de 95% van de energiedichtijd van het Universum. Met behulp
van ΛCDM kunnen we de uitdijing van het Universum, het ontstaan van struc-
tuur op grote schaal in het kosmische web en het ontstaan van sterrenstelsels tot
in detail voorspellen.

Het kosmische web is een van de meest fascinererende structuren in het Uni-
versum. Op de schaal tussen uniformiteit op hele grote schaal, en de vorming van
sterrenstelsels op kleinere schaal. Op deze schaal ontstaat er door zwaartekracht
een complex, verbonden patroon. Het kosmische web kunnen we opsplitsen in
vier componenten, afhankelijk van de hoeveelheid dimensies waar zwaartekracht
de structuur heeft samengetrokken. De componenten zijn, compacte nodes, lang-
werpige filamenten, afgevlakte muren en grote, uitdijende leegtes.

Binnen ΛCDM zijn er een aantal parameters die we aan de hand van obser-
vaties kunnenmeten. Tussen veel waarnemingen hoevenwe deze parameters niet
of amper aan te passen om de theorie de laten overeenkomen met wat we zien.
Hier is recent alleen verandering in aan het komen. Als we waarnemingen van
het jonge Universum vergelijken met waarnemingen van het nabije Universum
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vinden we spanningen tussen de waardes van de parameters die worden geme-
ten. Een van deze spanningen is in de parameter σ8. Deze parameter bescrhift de
hoeveelheid klontering in het Universum. Bij een grotere waarde is materie het
Universum meer klonterig en bij een lagere waarde is materie meer egaal.

Om dit soort spanningen beter te kunnen gebruiken maken we gebruiken van
simulaties. In zulke simulaties kunnen we aan de hand van het kosmologisch
model de evolutie van materie in het universum voorspellen. Binnen kosmolo-
gische hydrodynamische simulaties simuleren we structuur tot op de schaal van
de processen in sterrenstelsels, zoals supernova en superzware zwarte gaten. Om
simulaties te doen op een grote schaal moeten we de resolutie van de simulatie
verlagen. Hierdoor is het onmogelijk van nature sterren en zwarte gaten in de
simulatie te laten ontstaan. In plaats daarvan worden deze belangrijke processen
toegevoegd aan de hand van sub-resolutiemodellen. Deze modellen bootsen het
effect dat deze processen hebben op de structuur die wel natuurlijk in de simu-
latie voorkomt na. Vooral de energie die vrijkomt als een superzwaar zwart gat
gas opslokt heeft ook een meetbaar effect op onze metingen van kosmologie. Het
is dus belangrijk dat we het effect dan deze processen hebben goed begrijpen.

In dit proefschrift wordt gebruikgemaakt van de FLAMINGO simulaties. De
FLAMINGO simulaties zijn een serie simulaties in hele grote volumes. Verder
zijn er binnen FLAMINGO variaties van kosmologie, sub-resolutiemodel param-
eters en resolutie. Hiermee kan FLAMINGO gebruikt worden om te zien wat het
effect is van deze processesen op onze kosmoligische waarnemingen.

Een van de kosmologische waarnemeningen waar FLAMINGO erg geschikt
voor is zijn observaties van clusters van sterrenstelsels. Door het grote volume
was binnen FLAMINGOwordt gesimuleerd kan je statistisch robuuste conclusies
trekken over clusters. In het universum ontstaan structuren hiërarchisch, eerst
ontstaan er kleinere structure en die vallen samen om steeds grotere structuren
te laten ontstaan. Hierdoor zijn clusters de laatste structuren die ontstaan, en
de hoeveelheid clusters is daarmee afhankelijk van de gehele evolutie van het
Universum. Door het tellen van clusters in waarnemening kunnen we meer leren
over de kosmologische parameters en het onderliggende kosmologische model.

Wat clusters maken lastig maakt is dat we clusters eerst moeten identifi-
ceren in de observaties. Omdat clusters zulke grote objecten zijn kunnen we
ze observeren met veel verschillende type waarnemingen, bijvorbeeld X-rays,
Compton-Y1, en het tellen van de hoeveelheid sterrenstelsels die zich in de clus-
ters bevinden. Wat zo’n soort selectie moeilijk maakt is dat we een heel goed
model nodig hebben die beschrijft welke clusters we well kunnen zien, en welke
clusters we niet kunnen zien. Alleen als dat model goed geijkt is kunnen we ki-

1Compton-Y is de meetbare eenheid uit het Sunyaev-Zeldovich effect. Wanneer fotonen uit de
achtergrondstraling door een cluster van sterrenstelsels gaan komt een deel in contact met de losse
electronen, hierdoor wordt het signaal van de achtergrondstraling subtiel verandered. De magnitude
van de effect is afhankelijk van de elektronendruk, wat hoger is voor grotere clusters.
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jken of de hoeveelheid clusters die we zien overeenkomt met het aangenomen
kosmologische model.

Omdat het selecteren van clusters veelal wordt gedaan aan de hand van gas of
sterren, is dit een plek waar hydrodynamische kosmologische simulaties kunnen
helpen. Omdat die simulaties ook voorspellen of de clusters waarneembaar zijn,
kunnen ze ons informeren of wat voor systematische verschillen er zijn tussen
wat we observeren, en wat we verwachten aan de hand van onze modellen.

Dit proefschrift

Hoofdstuk 2: FLAMINGO: Het ijken van grote kosmologische
hydrodynamische simulaties met machine-learning

Zoals eerder genoemd is het belangrijk om de sub-resolutiemodellen van kos-
mologische simulaties te ijken. Omdat deze processen niet natuurlijk voorkomen
in de simulatie, zijn er grote onzekerheden over hoeveel impact deze modellen
hebben op de structuur die wel natuurlijk voorkomt in de simulatie. Het grootste
voorbeeld hiervan zijn de modellen van supernova en superzware zwarte gaten.
Deze processen zijn belangrijk omdat ze ervoor zorgen dat sterrenstelsels niet
oneindig gas kunnen opnemen. Het intergalactisch gas koelt langzaam af, en valt
dan in sterrenstelsels. Als deze processen niet zouden bestaan zou dit zorgen
voor enorme sterrenstelsels. Supernovae en superzware zwarte gaten zorgen er-
voor dat dit gas weer verhit wordt, en uit het sterrenstelsel wordt geduwt. Dit
process treedt vooral op als er veel gas in het sterrenstelsel zit. Hierdoor ontstaat
er een soort feedback loop waar gas koelt, zorgt voor supernovae en energie va-
nuit zwarte gaten en daardoor weer uit het sterrenstelsel wordt geduwt.

De sterkte van dit process is afhankelijk van een aantal numerieke parameters
die geijkt moeten worden. Voor simpele modelen zouden deze makkelijk geop-
timaliseerd kunnen worden. Het probleem is dat hiervoor het model duizenden
keren moet worden geevalueerd, iets wat niet mogelijk is met kosmologische hy-
drodynamische simulaties. Om dit op te lossen maken we gebruik van machine-
learning, getrained op tweeendertig kleinere simulaties. Aan de hand van deze
simulaties kan het machine-learning model leren hoe de simulatievoorspellingen
veranderen als de parameters veranderen. Dit model kan dan geoptimaliseerd
worden aangezien het vele duizenden keren sneller is dan de simulaties zelf.

We gebruiken deze opstelling om ervoor te zorgen dat de hoeveelheid ster-
renstels als functie van stermassa en de hoeveelheid gas in clusters overeenkomt
met waarnemingen. Hierdoor zorgen we ervoor dat de FLAMINGO simulaties
realistische sterrenstelsels en clusters heeft. Verder gebruiken we het model om
lichte variaties de ijken. In deze variaties veranderen we de parameters aan de
hand van systematische veranderingen in de data. Op deze manier kunnen we de
variaties gebruiken als een onzekerheidmarge voor onze sub-resolutiemodellen.
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Hoofdstuk 3: Het FLAMINGO Project: Een vergelijking van de
clusters van sterrenstelsels die worden gevonden met massa, X-ray
lichtsterkte, Compton-Y of sterrenstelsels abudantie

Een van de grootste uitdagingen bij het modelleren van de hoeveelheid zichtbare
clusters is het in kaart brengen van welke clusters wel te zien zijn en welke niet
te zien zijn. Dit noemen we de selectiefunctie. Als de selectiefunctie niet goed
in kaart word gebracht, kan dit niet alleen zorgen voor het verkeerd inschatten
van de massas van de clusters die zijn gevonden, maar ook dat secundaire clus-
tereigenschappen, zoals de temperatuur of massa in gas, systematische afwijkin-
gen hebben.

Om deze systematische afwijkingen in kaart te brengen kijken we naar het
verschil in de verdeling van massa’s als we clusters selecteren met massa, X-rays,
Compton-Y en sterrenstelsel abundantie. Hier vinden we verschillen tussen de
massa verdelingen die je krijgt als je een andere selectiemethode gebruikt. Voor
clusters op lage roodverschuiving, en met massa’s rond de 1014 M⊙, zorgen alle
methoden voor vergelijkbare resultaten. Voor hogere roodverschuivingen en lage
en hoge massa’s zitten selecties met Compton-Y het dichtst bij een massa-selectie
en hebben hierdoor het minst last van grote systematische afwijkingen.

Verder zijn de verschillen tussen selectiemethoden als het gaat over se-
cundaire eigenschappen, zoals of het cluster een koude kern heeft, of de cluster
dynamisch niet in evenwicht is, veel kleiner dan verwacht uit de observaties.
Wel zijn de massafractie in gas, en de temperatuur lichtelijk afhankelijk van
de selectiemethode. De minst zware clusters die worden geselecteerd kunnen
hierdoor een waarde hebben boven het gemiddelde voor hun massa.

Hoofdstuk 4: Het FLAMINGO project: Beoordeling van de
systematische fouten in het tellen van sterrenstelsels door
modelaannames

Een ander aspect van het gebruiken van clusters van sterrenstelsels voor kos-
mologie, is dat er accurate voorspellingen gedaan moeten worden voor de ho-
eveelheid clusters die verwacht worden zichtbaar te zijn voor een specifieke ob-
servatie. Om deze voorspellingen te doen worden er een paar anames gedaan:

• We kunnen een accuraat model maken voor de hoeveelheid clusters in het
Universum als een functie van massa.

• Voor elke massa kunnen we voorspellen hoe helder het cluster is voor het
type observatie dat we gebruiken aan de hand van een simpele relatie, een
machtswet met log-normaal verdeelde spreiding.

Aan de hand van de FLAMINGO simulaties verifiëren we of deze aanames de
simulaties kunnen beschrijven. Hiervoor kijken we naar de impact op de resul-
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taten van drie observatie campagnes: Planck, South pole telescope en Simon’s ob-
servatory wat staat voor een oudere, huidige en opkomende quantiteit van data.

Qua modellen voor de hoeveelheid clusters, zijn alleen de meest recente
modellen acuraat genoeg, zelfs voor vroegere en huidige observaties. De andere
anames zijn goed genoeg om geen invloed te hebben op huidige en oudere
observaties. Alleen in de toekomst zal er meer werk gedaan moeten worden om
al onze aanames te verfijnen.

Hoofdstuk 5: Dynamiek van het kosmische web, krachten en
getijdevormen

Zoals eerder genoemt, vormt het Universum op grote schalen een complexe,
ruimtelijk verbonden structuur dat we het kosmische web noemen. Omdat het
kosmische web de achtergrondstructuur is waar sterrenstelsels in ontstaan, is het
interessant om te kijken naar de dynamische invloed van het kosmische web. Dit
doen we door het kracht- en getijdeveld op te splitsen in het komponent van elk
veld wat wordt veroorzaakt door filamenten, muren, nodes en leegtes.

Als je deze splitsing maakt ontstaat er een duidelijk beeld. Voor het kracht
en getijdeveld spelen filamenten de belangrijkste rol. Voor het krachtveld
domineren ze ver boven alle andere komponenten. Qua getijden is het iets meer
gematigd, maar blijven ze bovenaan de hierarchie. Nodes zijn alleen dominant
in hun omgeving, en dragen gemiddeld niet veel bij aan het kracht en getijde
veld. Leegtes hebben een interessante rol. In het krachtveld zorgen ze voor grote
uitdijende regios, waar ze aan de randen een aardig bijdrage leveren aan de total
krachtsom. Vooral qua getijden hebben ze een grote invloed. Hier volgt het geti-
jde veld veroorzaakt door de leegtes tot in detail de structuur van het kosmische
web. Voor de grotere filamenten en muren hebben ze een normale bijdrage, maar
als enige zorgen ze voor getijden op de plekken waar de kosmische structuur
vrij lage dischtheden heeft. We concluderen dat filamenten de krachten in het
Universum echt drijven, alleen leegtes zorgen voor het aanbrengen van structuur
op kleine schaal.
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