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Introduction

At first there was something we will probably never know. Then, something
happened which we might never understand. This led to the creation of the
Universe as we know it. The first thing our Universe did was to expand, a process
that appears to still be ongoing. The study of how the cosmos as a whole is acting
is the topic of the field of cosmology.

Over the history of mankind many attempts have been made to describe
our Universe. However, when we talk about cosmology as a science, it starts
with Einstein’s formulation of general relativity (Einstein, 1916; Einstein, 1917).
Specifically, Einstein’s equations can be solved in the special case of the cosmo-
logical principle. The cosmological principle states that, at the largest scales,
the Universe is homogeneous and isotropic. If you assume a homogeneous and
isotropic density distribution, Einstein’s equations simplify to give expanding
or contracting solutions. In these universes the metric that describes space-time
takes the form of the Friedmann-Lemaitre-Robertson-Walker metric (Friedmann,
1922, 1924; Lemaitre, 1931; Robertson, 1935, 1936; Walker, 1937)

—ds? = —c?dt? +a(t)?(dr? + r2dQ?) (1.1)

where a(t) is the expansion factor of the universe. The validity of this equation,
and its prediction of a universe that is expanding was validated by the observa-
tions of Hubble (1929). As noted by Lemaitre, the expansion of the universe can
be traced back to a singular point in time, where the Universe emerged from a
singularity. This "Big Bang" lies at the start of our Universe. With current theo-
ries we can explain most of the processes the Big Bang (and inflation). However,
the Big Bang and the processes that precede it are likely to remain a mystery for
a very long time, and possibly forever.

1.1 The cosmic web and ACDM

As demanded by the cosmological principles, according to the Friedmann equa-
tions, the Universe is perfectly isotropic and homogeneous. This is true on the
very largest scales. However, the small inhomogeneities originating from quan-
tum fluctuations that are grown to cosmic proportions by inflation form the seed
of all the structures that we see in the Universe today. With the passing of time
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Figure 1.1: The dark matter distribution of the universe as predicted from the
FLAMINGO simulations. The intensity shows the dark matter density at each
point, while the colour shows the neutrino density at each point. The prominent
connected structure is what is called the cosmic web.

these small overdensities grow to become more and more dense. At first this hap-
pens linearly, the density fluctuations growing with the same linear factor on all
scales, until eventually they undergo non-linear collapse and become virialized
objects, which we refer to as haloes. It is only on the scale of haloes that non-
gravitational effects start playing a big role. Large scale structure formation can
be described almost completely using gravity only.
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1.1.1 The cosmic web

At intermediate scales, in between uniformity and virialisation, a particularly
striking pattern emerges: the cosmic web (Bond et al., 1996). The cosmic web is
an interconnected multi-scale structure that permeates the galaxy distribution.
The cosmic web structure is shown for the FLAMINGO simulation in Fig. 1.1.
The structure of a large scale cosmic web can be predicted from first order per-
turbation theory (Zel’Dovich, 1970) on the Lagrangian hydrodynamic equations
in an expanding universe. The prominent structures of the cosmic web originate
from the different axes along which gravity can lead to collapse. Collapse along
all three axes leads to dense nodes, collapse along two axes leads to extended
filaments, collapse along a single axis leads to flattened walls and expanding re-
gions become empty voids. Much like haloes, these individual structures form
hierarchically, and nodes, filaments, walls and voids can all merge and form big-
ger structures. As the cosmic web is both the first structure to emerge and the
structure within which galaxies are distributed, this makes it an interesting field
of study.

The cosmic web emerges as the result of gravitational collapse in a near uni-
form medium. Because this process happens on many different scales simulta-
neously, it gives the cosmic web somewhat of a fractal morphology, only broken
at the point where haloes start virialising. This multi-scale nature of the cosmic
web makes it naturally difficult to quantify and identify, as there are no a priori
set boundaries between each different part of it, and each individual element of
the it can appear at a multitude of different scales.

To identify the cosmic web, there is a range of methods available that vary
greatly in how they distinguish the different components. Because the cosmic
web is by nature multi-scale, it comes naturally to define the components of the
cosmic web morphologically or according to the local dynamics. The morphology
of the density field is what is used for methods like the multi-scale morphology
finder (MMF) and NEXUS(+) (Aragon-Calvo et al., 2010; Cautun et al., 2013). In
these methods the morphology of the density field is determined by using the
Hessian or tidal tensor. The sign of the eigenvalues of this tensor holds informa-
tion about the local morphology, showing whether there has been collapse along
one of the axes. This processes leads to a morphological identification for the
Hessian of the density field, and a dynamical identification for the tidal tensor.
NEXUS+ further pre-processes the density field by making use of a multi-scale,
log-space filtering method to bring out the structures at all scales, leading to a de-
tailed rendering of the cosmic web. One alternative to these methods is to make
use of the topology of the field (see e.g. Sousbie, 2013; Bermejo et al., 2024) but
these are not used in this thesis.

By making use of the method NEXUS+, Cautun et al. (2014) make an inven-
tory of the properties of the cosmic web and of the haloes that reside in it. In
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the Universe, about half the mass is in cosmic filaments, while voids make up
most of the cosmic volume at about 77%. The nodes take up less than 0.1% of the
volume but still make up about 11% of the mass. Nearly all halos with a mass
higher than Mygo.'> 10'3> M, are found only in the nodes of the cosmic web.
The different elements will also create different morphologically distinct tidal
and force fields, that can, for example, impact the orientation of halos (Jones &
van de Weygaert, 2009; Ganeshaiah Veena et al., 2019, 2021). A more complete
understanding of the cosmic web will further inform us about both cosmology
and galaxy formation.

1.1.2 Towards a standard model

The existence of a cosmic web has been verified observationally. Some of the ear-
liest confirmations came in the form of the "Stickman" found in the Centre of
Astrophysics (CfA) redshift survey (de Lapparent et al., 1986), shown in Fig 1.2.
This slice of the Universe shows a collection of filaments connected to a cluster in
the center in the slice. The image also shows the "fingers of god" redshift distor-
tions, where objects with a high velocity dispersion, like clusters, are stretched
out along the viewing direction.

At around the same time, the first large-scale structure formation simulations
where being done (Davis et al., 1985; Frenk et al., 1985; White et al., 1987). These
simulations where predicting structures similar to what was found in observa-
tions. At the time, cosmologies with (;,, # 1, let alone with a cosmological con-
stant, where still quite non-standard, and only a limited exploration was done of
different models. However, in comparisons with the redshift surveys (Efstathiou
etal., 1990) and galaxy clusters (Eke et al., 1996) it already seemed that a universe
with ) =~ 0.3 matched the data better. Together with observations from galaxy
rotation curves (Rubin et al., 1980) indicating that there was potentially a large
dark component of the matter density. The field was moving towards a shift in its
standard model. The observation that many see as the establishment of the new
paradigm are the the results from the supernova cosmology project (Perlmutter
et al., 1999). By making use of the supernova type la standard candle, they made
a definite detection of accelerated expansion driven by a cosmological constant
A that accounted for (24 ~ 0.7 of the energy density of the universe. This paved
the way for our current standard model of cosmology: ACDM.

1.1.3 ACDM

Over two decades later, ACDM is still the gold standard of cosmology. As a
model, ACDM indicates a universe with a flat geometry, that contains both a

I Mygoc is defined as the mass inside a spherical aperture where the average matter density is 200
times the critical density of the universe.
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Figure 1.2: Early results from the CfA redshift survey, showing the first clear
rendering of the cosmic web. The image is often referred to as "the stickman”,
due to the appearance of the redshift-distorted cluster in the center of the frame.
Image taken from de Lapparent et al. (1986).

cosmological constant and a cold dark component of matter that only interact
via gravity. In ACDM the early universe is characterised by a period of rapid
inflation. During this period of inflation, the seeds of structure are planted via
quantum fluctuation and the universe becomes geometrically flat. In its simplest
form ACDM can predict structure formation along the entirety of cosmic time,
according to six input cosmological parameters

» Q.h? - The cold dark matter content in the universe.
¢ (yh? - The baryonic matter content in the universe.
* to - The age of the universe.

* 1, - The power-law scalar index of the power spectrum of the primordial
fluctuation field.

. AIZ2 - The amplitude of curvature fluctuations.
» 7 - The optical depth to reionisation.

From these six the other more commonly used parameters can be directly de-
rived. For example the Hubble constant Hj, which describes the expansion rate
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of the universe, and og which describes the level of matter fluctuations on a scale
of 8h~! Mpc. With just these parameters, most of the last two decades of obser-
vations can be accurately modelled and predicted. Up to this point, there has
seemed to be only one very clear downside to ACDM. None of the three pillars of
the model, dark energy, dark matter and inflation, currently have a clear physical
mechanism that drives their existence. In essence, this makes ACDM mostly an
empirical model.

In base ACDM there are a number of parameters that are kept constant at
their most natural values. However, there are certain extensions that can be made
to the model that are self-contained with ACDM. Some examples are the effective
number of neutrinos species Neg and the assumption of a flat universe. Both of
these have been independently verified to be consistent with their natural values.
There are some extensions of ACDM that add new processes to it not included in
the base model. One example of this is the addition of massive neutrinos which
we know exist, but are not part of standard ACDM. Another example is to add a
parametric equation of state for dark energy

wpg = wo + (1 —a)w,, (1.2)

where wpg = 5%’; relates the pressure and density of dark energy and a is the ex-

pension factor. For this addition, the extension is more like a perturbation. This
extension is sometimes refered to as w,wyCDM. Finding a significant deviation
from (wy, w,) = (-1,0), the values which correspond to a cosmological constant,
would indicate additional limitations within base ACDM.

1.1.4 The Cosmic Microwave Background

One of the biggest successes of the hot Big Bang model is the prediction of a cos-
mic background radiation. Just after the Big Bang the universe is extremely hot
and dense, and light is unable to free stream over large distances. Once the uni-
verse cools down enough for the hydrogen to become neutral, the period referred
to as the era of recombination, the photons that were trapped in the Big-Bang
plasma are able to free stream for the first time. The radiation from these pho-
tons is still detectable today in the Cosmic Microwave Background (CMB). The
CMB gives us a window to how the universe looked like about 300.000 years after
the Big Bang. The accurate measurements of this radiation are one of the main
pillars of modern cosmology.

The original discovery of the CMB by Penzias & Wilson (1965) went paired
with its description by Dicke et al. (1965). Since then, multiple satellites like
WMAP (Komatsu et al., 2003) and Planck (Planck Collaboration et al., 2020a),
and also ground based observatories like SPT (Story et al., 2013) and ACT (Sievers
etal., 2013) have revolutionised the level of accuracy with which we can constrain
cosmological parameters. The Planck cosmological parameters are measured at
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better than per cent level accuracy. Because of the robustness of the modelling of
the CMB fluctuation signal, the consistency in the fitting of cosmological param-
eters, and the high sensitivity of the signal to the cosmological parameters, the
results from the Planck satellite form the reference model of cosmology.

Besides the primary CMB, in other words, the angular power spectrum of pri-
mordial fluctuations, the radiation of the CMB holds a wealth of other probes
of cosmology and structure formation. Of particular interest are the Sunyaev-
Zel’Dovich (SZ) effect and weak lensing of the CMB. The SZ effect is caused by
CMB photons interacting with high energy electrons between the time of emis-
sion and the time of measuring. This leads to a distinct spectral feature in the
CMB. As the effects are caused by high energy electrons, the SZ effect is stronger
for path-lines that cross galaxy groups and clusters, where there is a high temper-
ature electron plasma. The use of the SZ effect for galaxy cluster cosmology will
be covered later in this chapter. Besides cluster-finding, the SZ effect can also
be mapped over the entire sky (Planck Collaboration et al., 2014; Bleem et al.,
2022). When looking at the power spectrum of these maps, there is a (slight)
internal tension within the Planck results (McCarthy et al., 2018, 2023). At large
scales, simulations predict SZ to have higher power at matched cosmology, and
a lower og would partially resolve the tension. At small scales, there is a general
mismatch between the power spectrum and any predictions. For both scales there
is a likelihood that this is due to systematics in dealing with foreground removal,
which is highly non-trivial for SZ. For example a large shift was seen with the
Planck results between the 2013 and 2015 releases of the SZ signal maps. Such
an inconsistency is not found for the Planck lensing results (Planck Collabora-
tion et al., 2020b). Even though CMB lensing also probes the structures along the
line of sight, the cosmological inference is perfectly consistent with the Planck
cosmology, though it is sensitive to higher redshift than SZ.

1.1.5 Galaxy surveys and the Sg tension

When investigating the large-scale structure of the Universe, we are limited to
matter that emits light (or potentially gravitational waves or non-photon cosmic
rays, but those are outside the scope of this thesis.) Because of this limitation,
our main probes of structure are galaxies. Galaxies are the lighthouses that pop-
ulate the large-scale structure. For cosmology, the distribution of galaxies holds
information on the large-scale structure and hence can be used to constrain cos-
mological parameters. Much like the CMB, a lot of the information is contained
in the first order clustering, measured using the correlation function.

When it comes to measuring galaxies for cosmology, there are a few ap-
proaches that can be taken. In the simplest form, galaxies can be counted as a
function of their position on the sky to measure their angular correlations. If the
redshift is also measured, 3D correlation function analyses are possible. Because
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Figure 1.3: SDSS Galaxy distribution. Each dot represents a galaxy, color indi-
cates high number density. Image credit: M. Blanton and SDSS

of the peculiar velocities of the galaxies, the redshifts will give a distorted view
of the large-scale structure. However, the redshift-space distortions themselves
also hold cosmological information and can be used for cosmological inference.
Obtaining spectra for every galaxy is not a trivial matter, and any galaxy survey
that wants to use redshifts needs to be specifically designed to also measure
them. Therefore many surveys now also rely on photometric redshifts, where a
number of observing bands are used to give a rough estimate of the redshifts.
This is particularly useful for weak lensing surveys. To measure week lensing,
the most important observable is the shapes of galaxies, as their deformation
gives statistical information about the matter distribution along the line of sight.
By making use of photometric redshifts, the matter field can be analysed in a few
tomographic bins. By studying lensing as a function of redshift, we can obtain
additional cosmological constraints.
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Major constraints on the baryonic acoustic oscillations, peaks in clustering
at certain scales caused by acoustic waves in the primordial matter field, using
galaxies are obtained with the Sloan Digital Sky Survey (SDSS), Baryon Oscilla-
tion Spectroscopic Survey (BOSS) (Dawson et al., 2013; Ross et al., 2017; Icaza-
Lizaola et al., 2020) shown in Figure 1.3. BOSS provides some of the tightest
constraints at the redshifts they are sensitive to. The BOSS results are also in
agreement with the results from the Planck satellite. When it comes to spectro-
scopic surveys, the Dark Energy Spectroscopic Instrument (DESI) has also started
reporting their first cosmological results (DESI Collaboration et al., 2024). In
their initial data release they report finding a 3.90 detection of a waw0ACDM
signal when they combine their results with the results from the Planck satellite.
It is however likely that this is driven by some of their z.¢ = 0.5 data bin, which
might prove to be a statistical fluke, as the results from BOSS don't agree in this
redshift range.

When it comes to galaxy surveys, many current and upcoming surveys have
largely been designed to measure cosmology trough weak lensing. In general
relativity, light-rays travel along geodesics, which are straight only when space-
time is flat. However, as spacetime can be curved, large gravitational bodies alter
the the pathways of photons and distort the images of objects whose light passes
trough their potential. For deep potentials, this usually leads to effects similar to
light passing trough a lens, hence the name. The most massive galaxy clusters act
as strong lenses, where the background light is heavily distorted. However, for
large galaxy surveys, most objects are in the weak lensing regime, either around
less massive objects, or at larger distances from the most massive clusters. In the
weak lensing regime, the distortions of objects is too weak to pick up. Instead,
what is measured is the statistical distortion due to the lensing of many galaxies.
The signal is measured from sky-position correlated distortions of the shapes of
a large sample of galaxies.

Many large galaxy surveys have measured the weak lensing signal, with inter-
esting results. The results from the KiDS survey (Heymans et al., 2021) show a
tension with the results from the Planck survey. The the value found for the clus-
tering parameter og is ~ 30 lower than the Planck results. Results from the HSC
surveys (Miyatake et al., 2023) find a 20 tension and the results from the Dark
Energy Survey (Abbott et al., 2022) are at about 1.50 compared with Planck.
This has led to what is now called the Sg tension, named after the parameter Sg,
which is the combination of og and (), that is maximally constrained by lensing
surveys. The difference is relatively small, however, as weak lensing also probes
the smaller scales, there is also astrophysical information to be learned. In order
to further investigate the Sg tension, we need further advances in the models we
use to both compare the observations to and measure cosmology from.
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1.2 Models for cosmology

In order to test our understanding of galaxy formation and cosmology, there is a
plethora of models with which the data can be compared. These models are the
backbone of any cosmological inference. With advances in both the depth and
the observing area of cosmological surveys, it has become imperative that models
keep up with the high accuracy demanded by the observations. Stage 4 surveys
like LSST, Euclid, Nancy Roman, Simons observatory and CMB-S4 will demand
accuracy in the power spectrum at the level of less than a percent. This level
of precision not only makes accurate modelling a requirement, but processes like
neutrinos and baryonic physics now need to be accounted for and modelled accu-
rately. In this section different methods of modelling are discussed, starting from
analytic models and leading to more and more complex models. The details of
preparing these models for the high-accuracy constraints of upcoming surveys
will be discussed where applicable.

1.2.1 Initial conditions

In order to initialise our cosmological models, we need to specify initial condi-
tions. Within ACDM, the initial density field is described by a Gaussian random
field, defined only by its power spectrum with random phases. The fluctuations
in this random field originate from quantum fluctuations that were stretched
to cosmic scales via inflation (Guth, 1981; Linde, 1982). While deviations from
Gaussianity are one of the probes of deviations from standard ACDM, our current
constraints are still consistent with a perfectly Gaussian random field (Planck
Collaboration et al., 2020c¢).

Because the initial conditions are Gaussian, the main ingredient that needs
to be specified is the matter power spectrum. In ACDM, the equations of the
early universe can be fully specified, and then calculated numerically. This initial
matter power spectrum is often referred to as the linear matter power spectrum.
As structure formation happens power first grows linearly across all scales, hence
the name, but as structures formation evolves it becomes non-linear and starts
forming virialised structures. To calculate the linear power spectrum we make
use of Boltzmann solvers that solve for the equations of the early universe. Two
of the most widely used packages are CAMB (Lewis et al., 2000; Howlett et al.,
2012) and CLASS (Lesgourgues, 2011a,b).

The linear matter field quickly evolves into the non-linear regime, for which
the initial conditions become slightly more complex. For Lagrangian methods,
the first proper initial conditions generation algorithm comes from the work by
(Zel’Dovich, 1970). From the initial density field, the motions of a set of particles
can be described via ballistic motion. This method is known as the Zel’'Dovich
approximation and can also be used to evolve the matter field to the current
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time. However, the method becomes inaccurate once particles start crossing each
other’s paths. The Zel’Dovich approximation is the first order of Lagrangian per-
turbation theory applied to the cosmic density field. Since Zel’Dovich there have
been developments that allow for the generation of nested random phases (Jenk-
ins, 2013), that also make it easier to re-simulate smaller parts of the simulations
at higher resolution. Initial conditions can now also be initiated to 2nd (Hahn &
Abel, 2011) and 3rd order (Hahn et al., 2021).

Another major improvement for initial conditions is that there is no longer a
need for "back-scaling" the power spectrum. When back-scaling, agreement be-
tween simulations and the linear power spectrum is guaranteed by first calculat-
ing the z=0 linear power spectrum with CLASS or CAMB, and scaling this power
spectrum back to the starting redshift. With codes like monofonIC (Hahn et al.,
2021), no longer use this approach. This makes the biggest difference at interme-
diate redshifts, as it leads to the proper evolution. Additionally, for simulations
with gas and dark matter, monofonIC treats the different matter fields properly,
and gives a different inital power spectrum to gas and dark matter. The use of
higher order Lagrangian perturbation theory also allows the ICs to be evolved
to lower redshifts, which reduces the noise incurred in numerical simulations at
high redshifts. Extensions to the base ACDM model also have to be added to the
ICs to achieve high precision, like for example massive neutrinos (Elbers et al.,
2022).

1.2.2 Halo models

Now that we can generate initial conditions, let’s start with an analytic formula-
tion of structure formation: the halo model (For a recent review see Asgari et al.,
2023). The halo model is a useful model to discuss as it nicely splits up the prob-
lems into smaller parts, which will make some of the choices made for the more
complex models easier to understand. The halo model makes predictions for the
matter power spectrum and is able to predict the clustering of matter in halos
and subhalos with only a few ingredients: The linear matter power-spectrum, the
halo mass function, the satellite number density profile and the halo occupation
distribution.

The halo model splits the calculation into two terms: the two halo term and
the one halo term. The two halo term describes the clustering between central
halos. This thus describes clustering on large scales. The one halo term describes
clustering within a single halo, between the central and its satellites. This pre-
scription assumes that matter beyond the virial radius of halo clustering can be
described via linear theory, while all matter inside haloes is described by and
NFW profile. At both large and small scales the halo model can be very accu-
rate. However, at intermediate scales, where neither the one or two halo terms
dominates, it can become very inaccurate. Current halo models specifically add
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correction terms that are fitted to simulations to decrease the uncertainty in the
intermediate regime. This allows model like HMCode (Mead et al., 2021) to reach
quite a high accuracy of a few per cent. The flexibility of halo models also make it
possible to add beyond ACDM physics to the model, like the neutrinos, baryons
and differing dark energy equations of state included in HMCode. Halo models
are quick and easy to use. However, more complex and complete simulations are
always needed to check that the results are accurate.

1.2.3 Dark matter only simulations

Dark matter only simulations make the simplifying assumption that all matter
in the universe can be represented as dark matter that only interacts via gravity.
This simplifies the calculations. The matter density field is usually represented
as dark matter particles, that are evolved in a Lagrangian way. For systems with
a small number of bodies gravity can be solved by calculating all the particle-to-
particle forces. However, as these calculations scale as ~ N2, this quickly becomes
computationally infeasible. To solve this, the long range forces are usually imple-
mented via a particle mesh (Hockney & Eastwood, 1981). Here the particles are
binned onto a density grid, the mesh, allowing the forces to be calculated using
an fast Fourier transform. This speeds up the calculation as this process scales as
NlogN. With this method cosmological simulations become possible. This type
of simulation was popularised by Davis et al. (1985); Frenk et al. (1985); White
et al. (1987). Some of their results are shown in Figure 1.4

Particle mesh was the first step towards quick and efficient calculations of
dark-matter simulations. Modern codes, like GreeM (Ishiyama et al., 2009),
PKDgrav, (Stadel, 2001; Potter et al., 2017), GADGET-4 (Springel et al., 2021)
and SWIFT (Schaller et al., 2023) make use of a mesh for large scale forces,
and most opt for a tree-based fast-multiple-moment force calculation for the
particle-particle forces at small scales. This approach allows for both the speed
and easy periodic boundary conditions of a large scale mesh, and accurate forces
on short scales using the fast-multiple-moment method. This way the evolution
of the matter field can be calculated both efficiently and accurately.

It is exactly because of their relative ease that dark matter only simulations
are widely used. Because all matter is assumed to be dark, these simulations
make no direct predictions for galaxy properties besides the properties of the
dark matter haloes, which are largely not observable. Dark matter only simula-
tions are often populated with galaxies with different properties. To do this there
are various methods that will be described in the next section. Their efficient na-
ture also makes them the perfect candidate to create training sets for emulators
that predict the effect of changing cosmologies.

Due to their flexible nature, there are a lot of big dark matter only projects
that are still being used. Perhaps the most famous being the Millennium sim-
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Figure 1.4: Results of a cosmological simulation by the ’Gang of four’. Image
from Davis et al. (1985).

ulation (Springel et al., 2005a). The simulation encompassed a (500h~! Mpc)3
volume at a resolution of 8.6 x 108 Mg, and provides lots of insight into both cos-
mology and galaxy formation. In the era of precision cosmology, dark matter
only simulations are the backbone for the creation of mock surveys for current
and upcoming galaxy surveys. The simulations fall into two categories, depend-
ing on whether they are meant for large scale mock surveys, or for emulators. In
the first category we have simulation like the Euclid flagship (Potter et al., 2017)
and Uchuu (5, Universe in Japanese) (Ishiyama et al., 2021). In this case the
goal is to simulate an enormous volume. This usually leads to single simulations
with a very large particle number. The large volumes are needed to be able to ac-
commodate the depth and survey area of upcoming surveys. The other approach



14 Chapter 1. Introduction

is to run a large number of smaller simulations, like Mira Titan (Heitmann et al.,
2016) and AbacusSummit (Maksimova et al., 2021). In this case the different
simulations sample cosmological parameter-space probed by upcoming surveys.
The final goal of such simulation suites is to provide the training data for cos-
mological emulators. As mentioned before, we will describe these in more detail
later.

1.2.4 Populating dark halos

A lot of the use of dark matter only simulations comes from the models that are
attached to the results of these simulations. The final distribution of halos can
be populated with galaxies to create mock surveys. This way we can learn more
about what is required for the build-up of galaxies. There are various methods
for populating dark matter halos.

The simplest of these methods uses a Halo Occupation Distribution (HOD)
(Berlind & Weinberg, 2002). The HOD describes the number of satellites halos
per host halo, usually as a function of mass. However, these models can be made
more complex to account for more complex, non-linear effects in the clustering,
see for example the AbacusHOD (Hadzhiyska et al., 2023). While HODs are
generally quite simple models, their flexibility makes them ideal for generating
mocks. As HODs are applied after the simulation is done, one can quickly iterate
over their parameters. For cosmology this means that the HOD parameters can
be marginalised over, which may be preferred over assuming an explicit relation.

There are various, more complex, ways to make the connection between ha-
los, subhaloes and galaxies. One of these methods is SubHalo Abundance Match-
ing (SHAM), see for example Moster et al. (2010). For this method the primary
assumption is to assume that bigger galaxies reside in bigger subhalos, which in-
clude both centrals and satellites. With this assumption, observed distributions
of galaxies can be matched to a simulated subhalo distribution, thus populating
the subhalos with galaxies. The most complex models fall into the category of
semi-analytical models (SAM). These models are physics based, like for exam-
ple Galform (Cole et al., 2000), L-GALAXIES (Yates et al., 2021) or Dark Sage
(Stevens et al., 2023). For these models the full evolutionary histories of haloes is
taken into account, and the galactic properties are calculated across cosmic time.
SAMs come with free parameters that are tuned to replicate specific observations.
Finally there are empirical models like UniverseMachine (Behroozi et al., 2019),
where galaxy properties are fit to match observations.

1.2.5 Emulators for cosmology

While running ever larger simulations to account for the large observational vol-
umes is very important for mocks, we need to be able to make very accurate
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predictions for a large range of cosmologies, to constrain cosmological parame-
ters with upcoming missions. While halo models can do this cheaply, the extreme
accuracy requirements of upcoming surveys favour taking a more agnostic, ap-
proach that uses inputs from full simulations. As running full dark-matter-only
simulations (let alone hydro simulations) for methods like Markov Chain Monte
Carlo (MCMC) is not a viable strategy when it comes to the required computa-
tional time, this problem is overcome by making use of the wealth of machine
learning literature that has recently become more and more popular. The main
advantage for cosmology is that a limited amount of high accuracy simulations
can be used to train a machine learning model. The trained model can then make
prediction for how different observables respond to changes in cosmology.

To set up the emulators, a suite of simulations is run where the cosmological
parameters of interest are efficiently varied to cover the parameter range. Instead
of a regular lattice, the parameter space can be covered via more efficient meth-
ods like using a Latin hypercube (Sacks et al., 1989; Morris & Mitchell, 1995).
In a Latin hypercube each dimension is sampled uniformly, i.e. the same value
never appears more than once like in a regular grid. To optimise the volume
coverage, the parameter vectors for each sampling is scrambled until an optimal
volume filling is found. Using these designs, high accuracy can be obtain with
a limited set of simulations. For example, using their own framework described
by Heitmann et al. (2008), Heitmann et al. (2009) is able to achieve percent level
accuracy when varying five cosmological parameters using only 37 training sim-
ulations.

Once the parameter space is designed, and the to-be emulated observable is
obtained at each of the nodes, the emulator is trained using machine learning.
For the machine learning method used, different projects use different methods,
which are all able to reach sufficient accuracy. Some examples of used methods
are Gaussian processes (Heitmann et al., 2009; Bocquet et al., 2020; Moran et al.,
2022), polynomial chaos expansion (Euclid Collaboration et al., 2019) and neural
networks (Angulo et al., 2021). At this moment emulation has been used mostly
for the power spectrum and halo mass function, however, as we will explore in
later sections and chapters, the ability to directly predict observables as a func-
tion of cosmology and simulation parameters is a powerful tool that should be
used for more and more goals. An example of this is the emulator for weak lens-
ing aperture masses by Debackere et al. (2022). Emulators using hydrodynamical
simulations will be discussed later.

1.2.6 Cosmological hydrodynamical simulations

The most self-consistent way to model the universe is via the use of cosmological
hydrodynamical simulations, which are the main type of simulations used in this
thesis. As the name suggests, these simulations also model the evolution of the
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Figure 1.5: A comparison of the gas (left) and cold dark matter (right) distribu-
tion of a small cluster in the FLAMINGO suite of simulations. Figure taken form
Schaye et al. (2023).

baryonic matter field using hydrodynamics. This complicates the modelling as
this means that the hydro-forces now have to be solved on top of the gravity-only
calculation described before for the dark matter. A comparison of gas and dark
matter in such a simulation can be seen in Figure 1.5.

To solve the hydro forces, one can take one of two approaches: a Eulerian
approach or a Langrangian approach. Both approaches, and methods that are
in between, are widely used. One of the main numerical difficulties for cosmo-
logical simulations is that there is a very wide range of scales that need to be
resolved. From the large-scale structure at scales of ~ 100 Mpc to galaxies at
scales smaller than ~ 10 kpc there are already four orders of magnitude, with-
out even resolving anything that happens inside galaxies. The main numerical
challenge is focusing the computational effort in the dense regions where there is
more to resolve, while degrading the resolution in regions where barely anything
happens like in cosmic voids.

For Lagrangian particle methods this sort of optimisation comes quite natu-
rally. As the resolution elements are represented as particles with similar mass,
higher-density regions are resolved by more closely spaced particles. A popular
lagrangian method is Smooth Particle Hydrodynamics (SPH) which is used by, for
example, the codes GADGET-4 (Springel et al., 2021) and SWIFT (Schaller et al.,
2023), with specific implementations like SPHENIX (Borrow et al., 2022) and
Gizmo (Hopkins, 2015). In SPH, while particles have similar mass, the density
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can vary. The smoothing length, which defines the area over which the particles
mass is distributed, can become larger and smaller depending on the density.
In high density regions the smoothing lengths are smaller and the resolution is
higher. In low density regions the smoothing lengths are larger and the resolution
is lower.

Because of the multi-scale nature of the large-scale structure, a grid code with
a uniform grid is too expensive for most applications. One solution is to use
adaptive mesh refinement, like the code RAMSES (Teyssier, 2002). In this case
when a cell in the grid becomes too massive, the cell is split into smaller cells,
increasing the local resolution. Again roughly conserving mass is the natural
choice here, as this will lead to higher resolution in dense regions.

Additionally one can make use of a lagrangian grid code. One example of this
is the code Arepo (Springel, 2011; Weinberger et al., 2020). Arepo makes use of a
moving mesh. In this case advantages of both methods are combined. A moving
adaptive mesh allows the equations of hydrodynamics to be solved as if it was
a regular grid code, which is usually seen as more accurate than for example
an SPH approximation. At the same time the mesh is allowed to moved, so the
computational time can be focused in the higher density regions.

One of the main difficulties of doing cosmological hydrodynamics simulations
comes from the fact that a lot of processes that are important for galaxy formation
play out on much smaller scales than the simulation can resolve. From star for-
mation, stellar feedback and black holes, that can play out on sub-parsec scales,
to atomic cooling, it is unlikely that we will resolve the full range of scales in the
foreseeable future. However, as these processes are able to affect the scales that
are resolved by the simulation, they are added as subgrid/sub-resolution mod-
els, models for processes that are not resolved by the simulation. In the next few
sections the most important subgrid models for cosmological hydro simulations
will be detailed.

1.2.7 Radiative cooling and star formation in hydro simulations

The first model that will be discussed is what is referred to as radiative cooling,
though models for cooling generally include the effects of both radiative heating
and cooling. Cooling in cosmological simulations generally refers to processes
that affect the internal energy of the gas elements via radiative processes. Because
most simulations do not include ray-tracing of the light that is produced by star
particles, stellar radiation fields are usually also added to the cooling.

The complexity of cooling models is set by the assumptions that are made
when computing the cooling rates. Early models assumed collisional ionisa-
tion equilibrium and solar relative abundances (e.g. Sutherland & Dopita, 1993).
However, there are many other processes that can influence what is called cool-
ing in simulations. Examples of these are photo-ionisation, variations in the rel-
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ative abundances of certain elements, a UV background, high density gas being
affected by a stellar radiation field and self-shielding. Depending on the assump-
tions, the energy loss of particles can change by quite a bit, and it can have a
big impact on, for example, the lowest temperatures gas can cool too. In order
to calculate cooling rates, it is common to use packages that make use of theo-
retical calculations and lab results, like CLOUDY (Ferland et al., 2017). To in-
corporate a changing radiation field due to the UV background, stellar light and
self-shielding, modern cooling tables make use of the local density (Ploeckinger
& Schaye, 2020).

Once gas is allowed to cool, there could be instances of runaway collapse in-
side simulations. In this case gas can start cooling very rapidly and reach very
high densities. Besides potentially leading to nonphysical situations, this will
also cause the calculations of the hydro forces to become much more expensive.
In the regime of large cosmological simulations, where it is unfeasible to add the
feedback processes that can halt runaway collapse and create a realistic multi-
phase ISM, this problem is solved by adding an artificial "equation of state" (EoS)
via the use of an entropy floor. The form introduced by Schaye & Dalla Vecchia
(2008) is given by

1/3
— nH
TEOS = 8000 K(m) , (13)

where ny is the hydrogen number density. Gas that cools onto the EoS effectively
acts as a subgrid model for a properly pressurised multi-phase ISM.

The addition of the EoS also informs us about subgrid models for star forma-
tion. As described by Schaye & Dalla Vecchia (2008), the EoS in Eq. 1.3 corre-
sponds to a constant Jeans mass of 107 M. Part of the gas that is close to or on
the equation of state should therefore be assumed to be able to form stars. When
it comes to models of star formation, an equation of state is however not neces-
sary. The simplest method, which can be sufficient for simulations that reach very
high densities, is to have a density cut above which gas gets instantly converted
into stars, see for example Schaye (2004). For models of star formation, a broad
range of observations exist to create an empirical model for where stars can form.
Specifically, the model described by Schaye & Dalla Vecchia (2008) uses the rela-
tion between star formation rate surface density and gas surface density observed
by Kennicutt (1998) to prescribe the level of star formation as a function of the
pressure of the gas. In this case, each gas particle that has a high enough density
is assigned a star formation rate based on its pressure. Every time-step of the sim-
ulation the gas particles can then be stochastically converted into a star particle
based on this star formation rate. The formation of star particles also naturally
helps with the runaway collapse problem as very high density particles will be
converted to stars. Star particles are usually treated as collisionless particles.
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1.2.8 Feedback in hydro simulations

In cosmological simulations, the models that have the most impact, given their
uncertainties, are models for feedback. The main feedback processes are stellar
feedback, originating from young stars, and AGN feedback, originating from ac-
creting supermassive black holes. They are called feedback models because these
models are responsible for regulating the growth of galaxies. When a galaxy has
a lot of gas, this will lead to an increase in star formation and/or black hole accre-
tion. Without feedback, these processes wouldn’t stop until the galaxy runs out
of gas. Due to feedback, either in the form of supernovae or radiation and jets
from AGN, these processes are regulated as gas is heated and transported out of
the galaxy before it can lead to more star formation and black hole accretion. As
the amount of feedback is directly proportional to the amount of star formation
and black hole accretion, this causes the galaxy to go trough "feedback loops".
In each of these loops star formation increases until enough supernovae go off to
stop it again, after which either the gas that got heated by the supernovae slowly
cools again, or when the ejected gas is replaced by newly accreted gas, repeating
the cycle. A similar loop exists for supermassive black holes. In the following
paragraphs both types of feedback will be described in detail.

To implement methods of feedback, the first central question is a numerical
one. Both supernova and AGN feedback are characterised by violent behaviour
on short timescales. As detailed earlier, feedback happens when a galaxy accretes
a lot of gas. Feedback is thus more likely to happen when gas is very dense. Nu-
merically, dense gas is most susceptible to undergo a "cooling catastrophe” (see
Dalla Vecchia & Schaye, 2012). For both forms of feedback, if the energy that
is added to the gas is coupled too gently, for example when the energy is added
continuously at each time-step, it is likely that all the feedback energy is simply
radiated away before doing any work. Note that this is mostly a resolution effect
caused by relatively long timesteps. Many simulations therefore opt for inject-
ing feedback energy in large stochastic bursts. Alternatively, the gas particles
used for feedback can be decoupled from the hydrodynamics until they leave the
galaxy. Here, the lower density CircumGalactic Medium (CGM) allows for much
more efficient feedback. Another option is to temporarily suppres their cooling
rates.

Let’s first discuss supernova feedback and how it’s implemented. The two
main methods of transferring energy are via kinetic or thermal feedback. When
the resolution gets very high, the choice doesn’t matter, as the shock created when
the energy is injected will equilibrate to the Sedov-Taylor solution. At this point it
is important to take a moment to realise that for most cosmological simulations,
supernova feedback does not work with single supernova. Instead, a stellar par-
ticle represents a population of stars and, based on the initial mass function, each
particle injects the energy of a population of supernovae. This means that for the
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lower-resolution simulations, supernova feedback has to describe how collections
of supernovae couple to the rest of the galaxy.

When it comes to implementing this sort of feedback, both the total amount
of energy that is injected, and the amount of energy that is put into a single (nu-
merical) energy injection, are parameters. In the simplest model a stellar particle
dumps the energy into a neighbouring gas particle or cell. For thermal models,
the energy per injection is set by the change in internal energy, often charac-
terised by the temperature jump AT, see for example the work by Dalla Vecchia
& Schaye (2012). For kinetic models it is characterised by the change in veloc-
ity, often denoted as Avy (Dalla Vecchia & Schaye, 2008). In both cases the
chosen value in large part sets the efficiency of the energy injection. For values
that are too low, the energy is dissipated before it can do any work. For large
values, the feedback becomes more rare, giving more time for the gas to cool in
between events or a single effect can completely destroy a galaxy. While arguably
less physical, it is also possible to decouple the gas particles from the hydro until
they reach the CGM, this is the method employed by Pillepich et al. (2018). At
the lower CGM densities the feedback is much more efficient. For more complex
models like the upcoming COLIBRE simulation, mixes of kinetic and thermal en-
ergy are use to drive both galactic outflows, and turbulence in the ISM (Chaikin
et al., 2022).

When it comes to the total energy injected, there is a large amount of variety.
At lower resolutions a single fixed energy usually suffices (Schaye et al., 2010;
Kaviraj et al., 2017; Hirschmann et al., 2014; McCarthy et al., 2017; Schaye et al.,
2023). However, for both numerical and physical reasons, the energy can be made
a function of the properties of the halo/gas that is being shocked. For the Illus-
trisTNG model the energy depends on the velocity dispersion of the dark matter
halo and redshift Pillepich et al. (2018). For the EAGLE model the energy is a
function of both the metallicity and birth density of the stellar particle Schaye
etal. (2015). These models also introduce additional parameters. We will discuss
the calibration of free parameters in the next section.

The injection of AGN feedback energy into the gas has similar problems to
supernova feedback. However, before a black hole can become an AGN and do
feedback, it first needs to be seeded and grow via accretion and mergers with
other black holes. The amount of feedback produced by an AGN is tied to its
mass. Before an AGN can become dominant, it will first have to grow from a
small seed to a mass that is large enough to start injecting feedback energy.

In order to seed black holes, most simulations frequently run a halo finder
during the simulation (Springel et al., 2005b). When a halo is above a certain
mass, and does not already have a black hole, a black hole is seeded in its cen-
ter. The halo mass for seeding black holes and the black hole mass that is seeded
are both free parameters. Both parameters have an influence on how quickly the
black hole can grow. When black holes are small, one of the main growth mech-
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anisms is via mergers with other black holes. In the perfect case, the dynamics of
the black holes are resolved. However, in cosmological simulations the mass of
the black hole particles is usually similar to or smaller than the other particles.
This means that dynamical friction is not properly resolved by the simulation.
Therefore black hole might wander too much within the galaxy and mergers may
not happen on realistic timescales. To counter this, black holes are often explic-
itly repositioned to keep them at the centers of galaxy. This can have a big effect
on the growth of black holes and the efficiency of their feedback (see e.g. Bahé
et al., 2022, and references therein).

The other channel for black hole growth is via gas accretion. For hydro sim-
ulations for cosmology, the black hole is usually assumed to accrete gas mostly
trough hot accretion. This is described by Bondi-Hoyle accretion

2,2
Macer = &mm;g’ (1.4)
(cs2 +v5y)

where G is the gravitational constant, c is the speed of light, mpy is the mass of
the black hole, p is the gas density around the black hole, s is the local speed of
sound and vgy is the black hole velocity. One of the most important aspects of
this accretion channel, is that it scales as the square of the black hole mass. This
implies that when black holes get more massive, they are able to grow quadrati-
cally faster at a constant background density. Hence, when a black hole gets big
enough, accretion-driven growth becomes more important than mergers.

In order to calculate the accretion rate of the black hole, there are a few ad-
ditional models that are different from Bondi-Hoyle accretion. These can go
from an angular momentum limiter, like the one used in the EAGLE simula-
tion (Schaye et al., 2015), to direct accretion in very high resolution simulations
(Anglés-Alcazar et al., 2021). For simulations at relatively low resolutions and
simulations that employ an equation of state, the gas around the black hole may
not be able to reach sufficiently high densities for the black hole to accrete effi-
ciently. In that case Booth & Schaye (2009) describe that it might be preferred to
add a boosting factor to Bondi-Hoyle accretion. This takes the form of

n BBH
a:max{( H ) ,1], (1.5)
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where nyy is the hydrogen number density of the gas, nyy, is the hydrogen number
density above which star formation is allowed and gy is a free parameter. The
boost at high densities allows the black hole to accrete as if it is in a cloud of much
higher density, allowing the black hole to grow on a more realistic timescale.

A fraction of the mass that is accreted onto the black hole is used to fuel
AGN feedback. For AGN feedback the numerical problems are similar to those
described for stellar feedback. Catastrophic overcooling has to be accounted for.
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Compared with supernova feedback, AGN feedback is often implemented with
more energetic effects, and it therefore also acts on larger scales. Similarly to
supernova feedback, energy is distributed kinetically or thermally. A single mode
of feedback can be sufficient, see for example both EAGLE (Schaye et al., 2015)
and BAHAMAS (McCarthy et al., 2017). However, there are implementations
that use multiple modes of AGN feedback, based on how close to the Eddington
rate the black hole is accreting. In these models, used for example in SIMBA
(Davé et al., 2019) and IllustriTNG (Pillepich et al., 2018; Pakmor et al., 2023;
Nelson et al., 2023), the feedback is split up into two modes, usually referred to
as jet mode at low accretion rates, and quasar mode at high accretion rates. In
jet mode the AGN energy is often injected kinetically, along the axis of angular
momentum of the black hole (Husko et al., 2022). In quasar mode, the energy
is injected either thermally on kinetically, but isotropically to mimic a strong
radiation field emanating from the black hole. Much like supernova feedback,
these numerical recipes come with free parameters, the number depending on
the complexity of the model, that need to be calibrated.

1.2.9 Calibration of hydro simulations

If there is one thing that should be clear from the previous sections, it is that
there are not only many methods for each subgrid model, but additionally each
subgrid model contains uncertain parameters that we cannot constrain from first
principles. Therefore, when preparing to run large hydrodynamic simulations,
care has to be taken to make sure the subgrid models are tuned in a way that
the simulation is able to reproduce some relevant observational data. This sort of
approach was applied to semi-analytic models (see e.g. Bower et al., 2006) before
it was applied to hydro simulations (Schaye et al., 2015; Crain et al., 2015).

Depending on the goal of the hydro simulations, different observables are
chosen as calibration targets. For galaxy formation simulations, properties like
galaxy sizes and star formation rates are more important than for hydro simu-
lations that investigate cosmological inference.For cosmology, the priorities are
the properties of the gas in and around clusters, and ensuring that galaxies of a
certain stellar mass occupy halos with the correct mass via the stellar mass func-
tion. In choosing the data to use for calibration, there are a few considerations to
take into account. Some observables might look very promising for calibration,
but they are observationally not very constrained. A good example is the stellar-
mass-halo-mass relation. In theory constraining this relation would lead to the
most constraining results. However, the stellar mass function is much better con-
strained observationally, so it is a better target. Similarly, for clusters, the baryon
mass fraction would be much more constraining than the gas mass fraction, but
much more data exists for the gas fraction, making it the better choice.

Itis in the attempt of matching many observables that we learn the most about
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our subgrid models. Inconsistencies, degeneracies between astrophysical pro-
cesses and observables that we cannot match provide the biggest gateway into
improving our models and hence our understanding of the physics of structure
formation. It goes without saying that a model has to be robust to trust its pre-
dictions. This also makes it interesting for different simulation projects to take
different approaches. Seeing how the differences between approaches manifest
themselves when comparing predictions contains a wealth of information.

The differences in approaches come with changes in calibration targets, the
resolution, box size and subgrid physics. Each can vary greatly between differ-
ent simulations. One of the goals of some of the earlier simulations, like OWLS
(Schaye et al., 2010), was to investigate the effects of the different subgrid models
on, for example, the cosmic star formation history. Many higher resolution sim-
ulations focus on galaxy formation and evolution with different approaches and
methods. EAGLE (Schaye et al., 2015), FABLE (Henden et al., 2018) and SIMBA
(Davé et al., 2019) make use of SPH, HorizonAGN makes use of adaptive mesh re-
finement (Kaviraj et al., 2017) and IllustisTNG makes use of a moving mesh code
(Pillepich et al., 2018). None of those simulations investigate the multiphase ISM,
this is one of the main goals of the FIRE box simulations (Feldmann et al., 2023).
To investigate clusters and groups of galaxies, it is necessary to simulate a large
volume, at the cost of a lower resolution. This is the approach of simulations like
Magneticum (Hirschmann et al., 2014), BAHAMAS (McCarthy et al., 2017) and
the higher res MilleniumTNG (Pakmor et al., 2023).

One of the ways to investigate higher mass objects at a high resolution is to
make use of cosmological zoom simulations. For these simulations a full cos-
mological volume is simulated, but only a very small fraction of the box is run
at a high resolution. This approach can be used for Milky way galaxies, like in
the APOSTLE project (Fattahi et al., 2016) and Auriga (Grand et al., 2017), but
also for groups and clusters like in C-EAGLE (Barnes et al., 2017b) and Hydranga
(Bahéetal., 2017). One disadvantage of the zoom approach is that you are limited
to a small number of hand selected objects, making it impossible to look at things
like selection effects. One recent approach to partially circumvent this is to do a
zoom for many objects obtained from a single large volume, like for example the
MACSIS simulations (Barnes et al., 2017a), the Three-hundred simulations (Cui
et al., 2018) and ClusterTNG (Nelson et al., 2023).

The final simulation method, which has not yet been maximally explored but
will likely become much more popular in the future, is to run suites of simu-
lations for machine learning, much like how emulators are currently becoming
more wide-spread for dark matter only simulations. The biggest example is the
CAMELS suite of simulations (Villaescusa-Navarro et al., 2021), that has many
thousands of variations of subgrid physics parameters, cosmology and numerical
methods, but restricted to a small volume. The ANTILLES suite (Salcido et al.,
2023a) also has many variations of subgrid physics parameters. As demonstrated
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Figure 1.6: Ratio of the power-spectrum between full hydro simulations and the
corresponding dark matter only simulations as a function of scale. The different
lines show a large number of results of different hydro simulations. The blue
region and the red lines are obtained from the HMCode (Mead et al., 2021) im-
plementation of baryonic suppression. Plot taken from Bigwood et al. (2024).

by Brown et al. (2024), emulators can also be used to increase the interpretabil-
ity of subgrid models. Emulators also form the basis of the calibration of the
FLAMINGO simulations (Schaye et al., 2023), which is detailed in the next chap-
ter of this thesis.
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1.2.10 Baryons and cosmology

A lot of hydro work is done on galaxy formation. For cosmology, one of the main
results of hydro simulations is that baryons often cannot be ignored for cosmo-
logical inference. One of the main effects is what is referred to as baryonic sup-
pression. Because of AGN feedback in groups and clusters, gas is pushed out of
groups, and the gas around clusters is heated to higher pressures, limiting the
gas accretion rate. This leads to the matter distribution being "washed out" at
scales of the order of a Megaparsec. Compared to dark matter only simulations,
this leads to suppression of power, or in other words, a decrease in clustering on
these scales. Because the baryons decrease the clustering in the late universe, this
is seen as one of the candidate processes to explain the og tension. If baryonic
suppression is powerful enough, it would bias the lensing surveys to find a lower
og when compared to early universe measurements. This effect is shown as pre-
dicted by a large range of simulations in Fig. 1.6. As is clear from the figure, there
is no clear estimate of how strong this effect should be.

It is however very clear that there is an effect, as the effect is not only predicted
by hydrodynamical simulations (see e.g. Van Daalen et al., 2011; Semboloni et al.,
2011, 2013), but also by by analytical models constrained by observations (De-
backere et al., 2020). In order to model baryonic effects many approaches can be
taken. From analytical fits (van Daalen et al., 2020; Mead et al., 2021), to baryoni-
fication algorithms applied to dark matter only simulations (Chisari et al., 2019;
Arico et al., 2021; Giri & Schneider, 2021), or emulators (Salcido et al., 2023b).
In many of these models, the strength of the effect can be related to the baryon
content in high mass haloes. As shown by van Daalen et al. (2020), the baryon
fraction is a good probe for the level of baryonic suppression, allowing us to place
external constraints on the baryon effects on the power spectrum.

Besides effects due to baryonic suppression there are other observables, less
directly related to the power spectrum, that are sensitive to both baryons and cos-
mology. A prime example is the thermal SZ effect, which, as shown by McCarthy
et al. (2018) is mostly sensitive to cosmology on large scales, but on the smaller
scales baryons and neutrinos can have a big effect. The same is true for kSZ
profiles (see e.g. Bigwood et al., 2024). However, in simulations, current X-ray
measurements of the baryon properties of clusters and groups, and predictions
for gas properties, clustering, lensing, thermal SZ and kinetic SZ are in tension.
This tension might be partially due to og but there are hints towards a tension
between baryonic observables as well.

1.2.11 The FLAMINGO simulations

Currently what would be extremely informative for the field is large-volume full-
hydro simulations that explore potential systematic effects that our cosmological
probes are sensitive to. This is the main goal of the simulations constructed and
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used in this thesis: The FLAMINGO? simulations. The two biggest simulations
are a (2.8 Gpc)? simulation with 50403 gas resolution elements, leading to a reso-
lution of 1.09x10° M, and a (1 Gpc)® with 3600 resolution elements, leading to
a resolution of 1.34 x 108 M. The (2.8 Gpc)® simulation is currently the biggest
cosmological hydrodynamics simulation that reached z = 0. One of FLAMINGO’s
defining features is the systematic variations that are done in the (1 Gpc)® vol-
ume. In this volume the resolution is varied up and down by a factor eight, the
cosmology is varied, including specific variations in the neutrino mass, the feed-
back is varied according to systematic shifts in the observables that where used
for calibration, and there are runs with an alternative model for AGN feedback.

In addition to having many variations, FLAMINGO has a large set of out-
puts. Most notably these include full-sky lightcones that where produced while
the simulation was ongoing. The lightcones come in two forms, maps of certain
shells in redshift up to high z, and a full particle lightcone up to the redshift
where the volume starts to repeat on itself, and up to even higher z for hot gas
particles. This also includes a halo lightcone, with which the locations of halos
in the volume can be aligned with the lightcone maps and particles. This gives
many opportunities to forward model observations and make a direct compari-
son to simulated quantities. Additionally there are the standard simulation out-
puts, like finely spaced snapshots of all the particles and halo catalogs for each
of them calculated using the code SOAP3. The use of SOAP, also allows for easy
comparison between different halo finders, which include VELOCIraptor (Elahi
et al.,, 2019) and HBT (Han et al., 2012). The simulation outputs also include
X-ray luminosities for every particle, described by Braspenning et al. (2023), that
are consistent with the cooling in the simulation.

For its subgrid models FLAMINGO uses an evolution of the subgrid mod-
els used for OWLS (Schaye et al., 2010) and BAHAMAS (McCarthy et al., 2017,
2018). It has models for radiative cooling (Ploeckinger & Schaye, 2020), star for-
mation (Schaye & Dalla Vecchia, 2008), stellar mass loss (Wiersma et al., 2009),
supernova feedback (Chaikin et al., 2022), black hole seeding and accretion (Bahé
et al.,, 2022) and for thermal (Booth & Schaye, 2009) and kinetic jet-like AGN
feedback (Husko et al., 2022). While the models are all similar in spirit to ear-
lier simulations, nearly each one of them has received updates when compared
with previous work. The calibration of the subgrid physics is done using machine
learning, which is the topic of the next chapter of this thesis, so more details can
be found there.

The FLAMINGO simulations have already lead to some remarkable results.
The calibrated model of FLAMINGO has less baryonic suppression than BA-
HAMAS, especially at scales around and slightly below k ~ 1Mpc™! (Schaye et al.,

2Full-hydro Large-scale structure simulations with All-sky Mapping for the Interpretation of
Next Generation Observations.
3Spherical Overdensity and Aperture Processor, https://github.com/SWIFTSIM/SOAP



1.3. Galaxy Cluster Cosmology 27

2023). FLAMINGO also predicts that for reasonable variations in the subgrid
physics, the baryonic effects are not strong enough to resolve the og tension in
lensing or SZ (McCarthy et al., 2023). The same can be said for the effect of mas-
sive neutrinos, while they have some impact, the total effect needed requires a
neutrino mass that is larger than current constraints allow (Elbers et al., 2024).

1.3 Galaxy Cluster Cosmology

The final part of this introductory chapter concerns what many say are the biggest
bound objects in the Universe, galaxy clusters. Unfortunately, that description is
not quite correct, and a better description is the largest virialised objects in the
Universe. As expected from hierarchical structure formation, they are also the
last objects to form. Therefore, galaxy clusters are a powerful tool to explore both
the cosmological parameters and galaxy formation. The study of galaxy clusters
typically concerns objects of a mass Msgo.*> 104 M, though with the increasing
sensitivity of current surveys, more and more objects at lower masses are also
being considered. Objects with masses in the range 10! My < Mspo. < 10'* M,
are typically refereed to as galaxy groups.

As galaxy clusters are such extreme objects, observations of single clusters
have also made a huge impact, especially when it comes to our thinking about
dark matter. The first detection of a dark matter signature originates from ob-
servations by Zwicky (1933) of the Coma cluster. When comparing the observed
mass of Coma with the velocity dispersion of the galaxies inside Coma, there was
a large inconsistency between the two measurements when the dispersion would
be due to virialisation, hinting at a dark matter accounting for additional gravity.
Another big dark matter discovery was found via the bullet cluster (Clowe et al.,
2006). The bullet is a merging cluster. By observing the cluster in both X-rays for
the gas, optical for the stars, and by making use of weak lensing to reconstruct
the mass distribution, the authors found a clear dark matter signal originating
that was separated from the gas, where the bulk of the baryonic mass lies.

To understand how galaxy clusters can be used to infer cosmology, we must
make the connection to the halo mass function (HMF). The HMF characterises the
number of clusters per unit volume and mass. The expected shape of the HMF
is a power-law, with an exponential turn-off at the highest masses. The HMF is
very sensitive to the underlying cosmological parameters. Especially at the high
mass end, at galaxy cluster masses, small changes in the clustering (via og) or in
the matter content (via (2,) can lead to large changes in the HMF. Additionally,
as clusters form relatively late, they are also sensitive to changes in dark energy.

4M500c is defined as the mass inside a spherical aperture where the average matter density is 500
times the critical density of the universe.
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Figure 1.7: Full sky maps of Compton-Y in the FLAMINGO simulation. The
figure shows a few individual shells and how they add up to the full signal up to
z = 5. Figure taken from Schaye et al. (2023).

When observing clusters, with the exception of when we use lensing, we can-
not directly observe their masses. Instead, we have to resort to using a mass-
observable scaling relation. By making use of the scaling relation we can turn
an observable mass proxy back into a mass, and then infer the underlying HMF.
With clusters being such extreme objects, they can be observed across the en-
tire electromagnetic spectrum. Some examples are: via radio (van Weeren et al.,
2019), via the SZ effect (Sunyaev & Zeldovich, 1972) on the cosmic microwave
background, via detecting cluster members in the optical (Rykoff et al., 2014,
2016; Black & Evrard, 2022), via X-rays (Pierre et al., 2016; Liu et al., 2022; Bulbul
et al.,, 2024) and directly from weak lensing (Costanzi et al., 2019). A map of the
SZ effect from the FLAMINGO simulation is shown in Figure 1.7, the clusters are
clearly seen as large overdensities in the map. To get unbiased inference of cos-
mological parameters, each observable needs a well constrained mass-observable
scaling relation, and we need a good grip on the selection effects inherent to each
observable.

This section of the introduction will provide an overview of current con-
straints, selection effects found in cluster samples, how cluster counts are mod-
elled and finally an outlook on the future.
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1.3.1 Current constraints

In the last few years, many new surveys have released their cluster catalogues,
and many have released cosmological constraints along with their catalogues.
With the rapidly increasing sample sizes, and the ability to simulate ever in-
creasing volumes, this is an exiting time to work on galaxy clusters, and cluster
cosmology. While cluster cosmology can not yet reach the accuracy of the lensing
and clustering surveys, it is becoming a competitive alternative. When it comes
to large, recent cluster surveys this thesis focuses on surveys based on optical,
X-ray and SZ selections.

Galaxy richness selection In galaxy clusters, the bulk of the mass is found in
dark matter and gas. Therefore, in the optical, that is mostly sensitive to the stel-
lar light, we cannot directly probe the majority of the mass. The observable that
is most closely related to the mass is the number of satellite galaxies associated to
the cluster. This is referred to as the galaxy richness, often denoted with A. While
the counting of galaxies might seem straightforward, there are many effects that
make it difficult to accurately assign satellites to the correct center. The first
complication is that spectroscopic samples are much more difficult to obtain, so
members often have to be identified using photometric redshifts. Additionally,
there are many fore and background galaxies that might contaminate the signal.

The most often used solution is to try and model all these effects simultane-
ously, and create a Bayesian likelihood for each cluster that gives the most likely
value of galaxy richness for each cluster. This method is known as Redmapper
(Rykoff et al., 2014, 2016). Redmapper directly models the background galaxies,
the galaxy red sequence and the number of member galaxies in a aperture whose
size depends on the galaxy richness. by making use of the red sequence it can
use the photometric data of each galaxy to decide whether the object is truly part
of the cluster. Additionally field galaxies are usually found in the blue cloud.
For the complete statistical sample, this also allows Redmapper to self-calibrate
its photometric redshifts, as it models the red sequence as a function of redshift
simultaneously. Redmapper has been applied to the SDSS data (Rykoff et al.,
2014), DES verification data (Rykoff et al., 2016) and DES year 3 data (Pereira,
2021). The SDSS and DES year 3 have also used the RedMapper samples to con-
strain cosmology. In both cases, the samples need an additional calibration step
to constrain the mass-observable scaling relation. For the cosmology from the
SDSS sample, this has been done using both X-ray calibration (Kirby et al., 2019)
and calibration using weak lensing (Fumagalli et al., 2024). A lensing approach to
the calibration is also used for the DES year 3 results (Pereira, 2021). The cosmo-
logical constraints found using these samples are in agreement with the results
from the Planck survey, though they are not constraining enough in general to
find discrepancies at the level of the current Sg tension.
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X-ray selection X-ray selected cluster samples are usually based on a flux cut. In
this case the survey instrument sweeps a certain region of the sky, and all objects
that fall above that flux cut are included in the cluster sample. The X-ray photons
that are detected originate from the very high temperature intracluster medium
(ICM). One of the advantages of using X-rays is that the X-ray emission can also
be directly used for calibration of the mass-observable scaling relation. Via the
assumption of hydrostatic equilibrium, the mass can be directly estimated from
the temperature and density profiles (see e.g. Sarazin, 1988). While real clusters
not being in hydrostatic equilibrium does lead to a biased estimate of the mass
(see e.g. Hoekstra et al., 2015; Eckert et al., 2016; Smith et al., 2016), this is an
effect that can be accounted for when inferring cosmological parameters. Besides
making a statistical inference, we can use lensing measurements, to directly infer
the value of the hydrostatic bias from observations.

There are many X-ray surveys that have counted the number of clusters on
the sky. The survey area and depth have improved by orders of magnitude. The
earlier surveys like ROSAT (Rosati et al., 1998; Ebeling et al., 1998) had of the
order of a hundred objects. Currently surveys with that number of objects, like
the HSC-XXL survey Eckert et al. (2016); Akino et al. (2022) are able to go much
deeper, and also probe lower mass objects. The eROSITA equatorial Final Depth
Survey (eFEDS), goes very deep and includes around 550 clusters (Liu et al.,
2022). The biggest current X-ray survey originates from the eROSITA all sky
survey (Bulbul et al., 2024) that contains over twelve thousand individual ob-
jects. With these huge samples, cosmological constraints from cluster cosmology
are able to get much tighter.

Nearly all of these surveys have also been used to constrain cosmology. How-
ever, the methods used to constrain the mass-observable scaling relation have
changed over time. For the cluster cosmology with ROSAT, hydrostatic equilib-
rium was assumed to connect masses to temperature, which was then connected
to a luminosity using observed scaling relations (Borgani et al., 2001). Similar
scaling relations are used by Garrel et al. (2022), however, they are either cali-
brated using their own sample, or left as a free parameter. Both eFEDS (Chiu
et al.,, 2023) and eROSITA (Ghirardini et al., 2024) make use of overlap with
weak lensing surveys to calibrate their mass-observable scaling relations. At this
point the large X-ray survey samples are able to put good constraints on the cos-
mological parameters, close to the level of Planck CMB for (2., and og.

SZ Selection The last method we will discuss is detecting clusters via their Sun-
yaev & Zeldovich (1972) signal. As CMB photon propagate the universe, they
might interact with free, high energy, electrons trough inverse Compton scat-
tering (referred to as the SZ effect). This effect scales directly with the electron
pressure, which is very high at the centers of galaxy clusters. The SZ effect leaves
a distinct spectral distortion in the CMB, which can be used to detect clusters.
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In particular, by making use of a matched filter, clusters are detected by finding
the exact spectral distortion among CMB maps at different frequencies. Because
clusters have similar pressure profiles (Arnaud et al., 2010), they have a clear ex-
pected spacial and frequency signal. By using the expected signal in a matched
filter approach, sources can be extracted, even when the signal is very faint (Melin
etal.,, 2006, 2012). The SZ effect does not depend on redshift, even in projection,
making it also sensitive to picking up clusters at high-z.

Whenever the CMB is detected at multiple frequencies, it is also possible to
try and detect clusters via the SZ signal. The largest SZ cluster catalogues orig-
inate from the Planck satellite (Planck Collaboration et al., 2014, 2016b), the
South Pole Telescope (SPT) (Bleem et al., 2024) and the Atacama cosmology tele-
scope (Hilton et al., 2018, 2021). With these advances, the number of SZ detected
sources has gone from a hundred with Planck, to thousand(s) with SPT and ACT.
From these cluster samples it is possible to constrain cosmology. The results from
the Planck SZ clusters (Planck Collaboration et al., 2016a) find a slight discrep-
ancy in cosmological parameters with the primary CMB. This discrepancy is not
found with the SPT clusters (Bocquet et al., 2024). The Planck cluster cosmol-
ogy made use of a scaling relation calibrated using hydrostatic masses, and their
analysis acounts for the hydrostatic bias, while the SPT cluster cosmology made
use of a weak lensing calibration.

While SZ is a very clean and powerful method for the selection of clusters,
it does have several drawbacks. One of the effects is source confusion. Also,
when calculating the SZ signal it is important to take into account foregrounds
as their spectral features might be wrongfully identified as clusters. Foregrounds
include dust in clusters (Melin et al., 2018) and the cosmic infrared background
(Zubeldia et al., 2023). Because the signal is already quite weak, these foreground
effects add additional difficulty when selecting galaxy clusters.

1.3.2 Selection effects

In order to obtain clean samples with each selection method, it is important to
have a good idea of systematics and biases introduced by the selection. Obser-
vationally, there have been many comparisons between samples with different
selection methods, and clear differences have been found.

Lovisari et al. (2017) use X-ray observations to investigate the morphology of
SZ selected clusters and find that they are more disturbed than X-ray selected
sources. X-ray selected clusters are instead found to have a larger fraction of
cool-core clusters. Both Rossetti et al. (2017) and Andrade-Santos et al. (2017)
find an increase in cool core fraction for X-ray samples when compared to SZ
samples. The difference is attributed to an increase in the central density for
cool core clusters, which disproportionately boosts the X-ray flux compared with
the SZ signal. However, Chon & Bohringer (2017) suggest that the differences
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between SZ and X-ray selected samples might not originate from the different se-
lection techniques, but instead they originate from differences between volume
and flux limited samples. They do this by comparing a flux and volume lim-
ited sample with X-rays. In a comparison between X-ray clusters in eFEDS and
optically selected clusters with HSC, Ota et al. (2023) find differences in the frac-
tion of disturbed objects and the slope of the luminosity temperature relation.
Marini et al. (2024) use the Magneticum simulations to investigate these effects
with mock X-ray surveys. They find that the lowest mass galaxy groups that are
detected have a bias towards being more gas-rich.

As long as these effects don’t directly influence the mass-observable scaling re-
lation, they will only have a moderate effect on cluster cosmology. However, some
of these secondary observables, like the cluster gas fraction, are important for the
calibration of hydrodynamic subgrid physics (Semboloni et al., 2011, 2013; Mc-
Carthy et al., 2017; Debackere et al., 2021; Giri & Schneider, 2021; Salcido et al.,
2023b), and hence using biased samples might lead to unrealistic calibration,
hampering our ability to use these constraints to make predictions for baryonic
effects on cosmology.

In order to investigate potential selection biases for cosmology, one can com-
pare scaling relations found in the same field for multiple selection methods.
Willis et al. (2021) highlight how some of the morphological selection criteria
can be influenced by the XMM point spread function and lead to sources being
undetected in X-rays when comparing the XMM Newton XXL X-ray selected sur-
vey and HSC optically selected survey. When comparing SDSS optically selected
clusters with the X-ray selected XMM cluster survey, Giles et al. (2022) find dif-
ferences in the scatter of the Ly — A relation between the samples. Furthermore,
the fits of the Tx — Ly relation are found to be sensitive to the selection method.
As scaling relations directly affect the cluster counts, this indicates that different
selections might lead to using a biased mass-observable scaling relation. Grandis
et al. (2021) indicate that biases due to contamination by smaller haloes might
start playing a big role for eROSITA and SPT.

1.3.3 Models for cluster cosmology

If the observations have a well defined selection, the important final step is to
create a robust model to compare the observed counts with. This comes down
to two components, the HMF, which tells us the expected number of haloes, and
an observable-mass scaling relation with its scatter, which relates our selection
observable to a mass. By integrating over the observed volume, and accounting
for the selection function, these two quantities can be integrated over to predict
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number counts. The integral to solve is given by

Zmax (Asky (Mmax dv
N(Xc) :J J- J- ¢(M,z,0)x(M,z,Xc)———(0)dMdQdz, (1.6)
0 0 Mo dQdz
where ¢(M, z,0) is the HMF; x(M, z, X¢) is given by the selection function and
the scaling relation and gives the probability of a cluster with mass M and at
redshift z to be observed for a given cut Xc; dg‘%(e) gives the differential co-
moving volume; and finally 6 indicates the cosmological parameter vector. This
is the equation is in simplest form. Additionally, the HMF will depend on as-
trophysical parameters and survey specific selection effects will lead to further
modifications of £. Getting the modelling of the cluster population and selection
effects correctly is key in inferring unbiased cosmological parameters.

To make predictions for the HMF we need to turn to models that can de-
scribe it as a function of the cosmological parameters and cosmology. The HMF
has a characteristic shape, starting as a power-law, with an exponential turn-off.
The HMF of the FLAMINGO simulations is shown in Figure 1.8. A widespread
method to predict the how the HMF changes with cosmology was introduced
by Jenkins et al. (2001). By the addition of an empirical fitting formula to the
extended Press & Schechter (1974) formalism, the HMF can be computed from
predictions of the non-linear power-spectrum made by Boltzmann solvers. This
requires calibrating the empirical formula to cosmological simulations. The fit-
ting formulae used where updated by Tinker et al. (2008, 2010), which included
extensions to be able to predict the HMF for many different spherical overdensity
definitions. However, we know that the HMF is affected by astrophysical effects
(Velliscig et al., 2014; Bocquet et al., 2016; Schaye et al., 2023). To model these
effects, the Jenkins et al. (2001) method was further updated and expanded to
hydrodynamical simulations by Bocquet et al. (2016) by making use of the Mag-
neticum simulation (Hirschmann et al., 2014). They also show that there are large
differences in the inferred cosmological parameters when introducing hydro, and
also between different HMF models. Just as for other cosmological observables,
there are now also emulators of the HMF that interpolate the predictions of a
large suite of dark matter only simulations. One example of such an emulator
is the MiraTitanHMFEmulator (Bocquet et al., 2020), based on the Mira Titan
simulations (Heitmann et al., 2016).

For the scaling relation, the standard approach is to assume a power law rela-
tion between mass and the observable with lognormal scatter. These relations are
then truncated by the selection function to lead to the observed cluster counts.
The proper calibration of the scaling relation and its scatter is very important
for unbiased results (Mantz, 2019). This also includes potential redshift evolu-
tion of the relations. One method is to assume self-similar scaling (Kaiser, 1986,
1991). Most recent cluster cosmology inferences use the overlap between the sur-
vey volume and existing weak lensing surveys to calibrate the scaling relation
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Figure 1.8: The HMF from dark matter only simulation in the FLAMINGO suite
of simulations. The number density of objects per logarithmic mass bin is shown
as a function of M,ggm,. The different lines indicate which FLAMINGO simulation
the line is taken from. On the right y-axis, the number of objects in that bin for
the 2p8 simulation is shown. Figure taken from Schaye et al. (2023).
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(Chiu et al., 2023; Bocquet et al., 2024; Ghirardini et al., 2024). This way the
scaling relation can be constrained self-consistently within the observed volume
and simultaneously fit along with the cosmology.

1.3.4 Future surveys

With the release of the first eROSITA catalogue (Bulbul et al., 2024) and the most
recent SPT catalogue (Bleem et al., 2024) there has been a huge increase in the
available samples sizes. With upcoming surveys like Euclid and LSST, the sample
sizes of optical surveys are also likely to increase by orders of magnitude (Artis
et al., 2022). Furthermore, eROSITA has not yet reached its final depth, so in-
creases in the X-ray sample are expected soon. For SZ there are multiple upcom-
ing instruments, for example the Simons Observatory (Ade et al., 2019), which
are forecasted to push the number of observed SZ clusters to over ten thousand.

Not only will the largest numbers allow us to obtain ever tighter observational
constraints, they will also allow for a much more detailed look at the formation
and evolution of these objects. This way we will be able to learn more about
both cosmology and galaxy clusters in general. One of the main paths forward
from a modelling perspective is to carefully forward model simulation results. As
the observations get more detailed, the systematics introduced by the instrument,
noise and projection will make it much harder to do apples to apples comparisons
if they are not properly forward modelled. Careful forward modelling will also
further help us understand selection effects, cluster properties, and shortcomings
of our simulations.

1.4 This thesis

This thesis will cover a range of topics relating to the setting up of subgrid physics
in hydrodynamical simulations, cluster cosmology selection and modelling, and
the large scale, cosmic web, force and tidal field.

* In Chapter 2, the calibration strategy for the subgrid physics of the
FLAMINGO hydrodynamical simulation suite is described. By making
use of Gaussian process emulation, we are able to set up emulators using
a training set of simulations where the subgrid physics is systematically
varied. By making emulators for the stellar mass function and the cluster
gas mass fraction, the subgrid physics can be fit to observations. Further-
more, we fit the emulators to systematic shifts in the observations to obtain
constrained subgrid variations that can inform us about the uncertainty in
the baryonic modelling.

* In Chapter 3, we use the FLAMINGO simulations to investigate three differ-
ent selection methods, X-ray, SZ and galaxy richness. We find that depend-
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ing on the redshift and mass of the sample of interest, different selection
methods are more or less biased with respect to a mass selected sample.
Overall, SZ selection seems to provide the most unbiased selection for all
masses and redshifts. Richness is relatively unbiased up to z = 1, but it
suffers the most from contamination by smaller haloes. We also find that
contamination to a biased temperature and gas fraction for the smallest
haloes in the sample when selecting based on SZ or X-rays.

* In Chapter 4, we assess how well standard cluster cosmology modelling
is able to recreate the results of the FLAMINGO simulations. To investi-
gate this, we create three surveys, similar to the Planck, SPT and future
Simon’s observatory SZ-selected cluster catalogues. We find that for future
surveys, baryonic effects on the HMF will need to be accounted for. Fur-
thermore, a single power-law mass-observable relation might lead to slight
biases for future surveys. Additionally, we further confirm the fact that not
all current HMF models in use have the required accuracy to reproduce the
FLAMINGO simulation, which can lead to problems even at the sensitivity
of Planck.

* Finally, in Chapter 5, we investigate the dynamical influence of the differ-
ent components of the cosmic web. By making use of the NEXUS+ cosmic
web identifier, we split both the cosmic force and tidal field into the parts
that are caused by filaments, voids, walls and nodes. Our results reveal that
the bulk of the motion in the Universe is caused by the gravitational force
exerted by filaments. However, when it comes to the smaller-scale struc-
tures, the forces are caused by the voids. Nodes only affect their immediate
environment. We thus find that filaments drive the dynamics of the cosmic
web, while voids organise its finer details.

1.5 Outlook

There are multiple interesting avenues that are still open for investigation that
would build upon the results presented in this thesis. As already highlighted
previously, the main effort should go into building forward modelling pipelines
for the cluster observables investigated in this thesis. Given the large range of
outputs generated by the FLAMINGO simulation suite, which importantly in-
cludes full-sky lightcones for many observables, forward modelling should be
relatively straightforward.

Another avenue that should be explored, is further application of emulators
for simulations. We are working on using emulators to design the baryonic vari-
ations. In this way we can create a grid of training simulations that vary both
cosmology and subgrid physics. By making use of emulators, these baryonic vari-
ations can be parameterised in terms of observable parameters, like for example
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the gas and stellar mass fraction in clusters. This will not only allow us to gain
a better understanding of the coupling between cosmology and baryons, but also
to put observational priors on the baryonic parameters when needed.

The true power will come when combining these methods. If we can cre-
ate forward modelled predictions for each of the simulations in the training set
of a baryonic cosmology hypercube, we can directly emulate the predictions for
upcoming telescopes. This might even allow us to emulate observations more
and more directly, removing the need for intermediate modelling of the observed
quantities. This will not only greatly reduce the systematics in the results ob-
tained from comparisons between theory and observation, it will also allow us to
understand better where our modelling is still lacking.
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Abstract

To fully take advantage of the data provided by large-scale structure sur-
veys, we need to quantify the potential impact of baryonic effects, such as
feedback from active galactic nuclei (AGN) and star formation, on cosmo-
logical observables. In simulations, feedback processes originate on scales
that remain unresolved. Therefore, they need to be sourced via subgrid mod-
els that contain free parameters. We use machine learning to calibrate the
AGN and stellar feedback models for the FLAMINGO cosmological hydro-
dynamical simulations. Using Gaussian process emulators trained on Latin
hypercubes of 32 smaller-volume simulations, we model how the galaxy stel-
lar mass function and cluster gas fractions change as a function of the sub-
grid parameters. The emulators are then fit to observational data, allowing
for the inclusion of potential observational biases. We apply our method to
the three different FLAMINGO resolutions, spanning a factor of 64 in particle
mass, recovering the observed relations within the respective resolved mass
ranges. We also use the emulators, which link changes in subgrid parameters
to changes in observables, to find models that skirt or exceed the observa-
tionally allowed range for cluster gas fractions and the stellar mass function.
Our method enables us to define model variations in terms of the data that
they are calibrated to rather than the values of specific subgrid parameters.
This approach is useful, because subgrid parameters are typically not directly
linked to particular observables, and predictions for a specific observable are
influenced by multiple subgrid parameters.
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2.1 Introduction

The evolution of the large-scale distribution of matter in the Universe is highly
sensitive to the underlying cosmological model. Current probes have given us
our concordance cosmological model ACDM, which consists of a spatially flat
universe, where dark energy and cold dark matter dominate the current energy
density (for a review see Frieman et al., 2008).

The concordance model has been independently validated by a large array
of probes. These include the cosmic microwave background (CMB) (e.g. Planck
Collaboration et al., 2020), galaxy clustering and gravitational lensing (e.g. Ab-
bott et al., 2022; Heymans et al., 2021), baryon acoustic oscillations (BAO) (e.g.
Alam et al., 2021), and more (for a review see Turner, 2022). While all the probes
broadly agree with the ACDM model, tensions remain between early universe
probes, like the CMB, and late-time probes, like the distance ladder and weak
lensing. For the Hy and og parameters, the tension is at the level of a few stan-
dard deviations (e.g. Heymans et al., 2021; Abbott et al., 2022; Riess et al., 2022).
Next generation surveys like Euclid' and LSST? will measure the matter power
spectrum to per cent level accuracy (Euclid Collaboration et al., 2020). The re-
sults from these surveys will provide us with a stringent test of the concordance
model, and show us whether these tensions will force us to modify the ACDM
model.

Most of the modelling work for large-scale structure is done with collision-
less N-body simulations (e.g. Heitmann et al., 2016a; DeRose et al., 2021; Euclid
Collaboration et al., 2019). N-body simulations model the evolution of cold dark
matter and can accurately predict the structure and clustering of dark matter
haloes under the effect of gravity only. The dark part of the matter component
is dominant in mass and hence, predictions from these simulations may provide
stringent cosmological constraints. However, baryons change the distribution of
dark matter through back reaction effects, but, with the exception of gravitational
lensing, we are limited to observing the imprint of the distribution of dark mat-
ter on the baryonic matter. Most of the baryonic matter is found in the tenuous
intergalactic medium (e.g. Nicastro et al., 2018; Macquart et al., 2020), which is
very challenging to observe directly. Large-scale structure surveys use galaxies,
which are located within dark matter haloes, to map the distribution of matter.

Sophisticated semi-analytical and semi-empirical models can make predic-
tions for how galaxies evolve within their dark matter haloes (e.g. Cole et al.,
2015; Lacey et al., 2016; Moster et al., 2018; Behroozi et al., 2019; Ayromlou et al.,
2021). Baryonic effects can be simulated with halo models (e.g. Semboloni et al.,
2011, 2013; Mead et al., 2015; Debackere et al., 2020; Acuto et al., 2021), added
to N-body simulations by baryonification algorithms (e.g. Schneider & Teyssier,

Lhttps://www.euclid-ec.org/
2hllps: /www.lIsst.org/
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2015; Giri & Schneider, 2021; Arico et al., 2021) or included as a parametric cor-
rection to the matter power spectrum (Van Daalen et al., 2020; Salcido et al.,
2023). However, the most self-consistent way to model how the large-scale struc-
ture is coupled with baryons, is via large cosmological hydrodynamical simula-
tions. Modern simulations like Magneticum (Hirschmann et al., 2014), EAGLE
(Schaye et al., 2015; Crain et al., 2015), Horizon-AGN (Kaviraj et al., 2017), Illus-
trisTNG (Pillepich et al., 2018), BAHAMAS (McCarthy et al., 2017, 2018), SIMBA
Davé et al. (2019) and MilleniumTNG (Pakmor et al., 2022) provide predictions
for the interplay between galaxy formation and the large-scale structure. The re-
sults from hydrodynamical simulations can also inform the simpler parametric
and analytic models.

One of the main difficulties for hydrodynamical simulations is the imple-
mentation and tuning of relevant astrophysical processes that originate on un-
resolved scales through subgrid physics. Processes like star formation and black
hole growth occur on parsec scales, and are not resolved. The resulting feedback
from stars and active galactic nuclei (AGN), do influence the distribution of mat-
ter on cosmological scales (Van Daalen et al., 2011, 2020; Debackere et al., 2020;
Schneider et al., 2020). Therefore, we need to create simulations that model their
effect on the resolved scales.

Subgrid physics models are characterised by a set of free parameters, in the
sense that there is both uncertainty in the processes we try to model and uncer-
tainty in how the models are affected by numerical limitations. An example of
the latter is the impact of numerical over-cooling on galactic wind models (see
Dalla Vecchia & Schaye, 2012). The numerical effects combined with the general
non-linearity of galaxy formation makes it difficult to implement subgrid physics
based solely on first principles. Instead, we have to calibrate the model by com-
paring it to a selection of observations, a partial forfeit of their predictive power.
As argued by Schaye et al. (2015), this is a necessary sacrifice. By ensuring cer-
tain relations are reproduced, the simulation retains predictive power for other
relations. Calibrating subgrid physics forces us to find a balance between how
many observables one tries to match and how many of the results can be deemed
predictions.

In this paper we discuss the calibration strategy used for the low-,
intermediate- and high-resolution simulations of the FLAMINGO project
(Full-hydro Large-scale structure simulations with All-sky Mapping for
the Interpretation of Next Generation Observations; Schaye et al. 2023).
The intermediate-resolution FLAMINGO model has the same resolution
(Mgas = 1.07 x 10° Mg) as used for the BAHAMAS project (McCarthy et al.,
2017, 2018), but in a volume of (2.8 Gpc)3. This volume is over two orders of
magnitude larger than BAHAMAS. Additionally, FLAMINGO includes a suite
of feedback and cosmology variations in (1 Gpc)® volumes. This includes a high
(Mgas = 1.34 x 108 M) and a low (Mgas = 8.56 x 10° M) resolution variation.
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Our goal is to expand the large-scale structure science of the BAHAMAS project
to larger volumes, different resolutions, and more cosmology and astrophysics
variations with a new code and an improved subgrid physics model. The
FLAMINGO simulation outputs also include on-the-fly full sky lightcones, both
as particles and as maps, for a variety of observables. Similarly to BAHAMAS,
we will calibrate to the observed present-day galaxy stellar mass function (SMF)
and the gas fractions in groups and clusters of galaxies (fq25). We opt for the
SMF to ensure we can reproduce galaxy clustering and lensing statistics if we
use the correct cosmology. The gas fraction is used to ensure we have a realistic
distribution of gas in and around clusters, which is not only important for
cluster cosmology, but also for baryonic effects on the matter power spectrum
(Semboloni et al., 2011; Schneider & Teyssier, 2015; Debackere et al., 2020; Van
Daalen et al., 2020; Arico et al., 2021; Salcido et al., 2023). While our fiducial
models are calibrated to reproduce the data, we also calibrate the subgrid physics
to the gas fraction and SMF data that has been shifted relative to the observed
values. These feedback variations will enable future FLAMINGO projects to test
the importance of astrophysical effects constrained by the uncertainties in the
data.

For BAHAMAS, and also for simulations like EAGLE and IllustrisTNG, cali-
bration was done by hand by varying the subgrid parameters within some rea-
sonable range until the simulation lined up with the calibration targets. This
approach works reasonably well in the context of galaxy formation, but it intro-
duces biases into the parameter selection. For cosmology applications we require
a more systematic and controlled approach. We want to be able to sample the
parameter space with a Markov Chain Monte Carlo (MCMC) method and to find
the posterior probabilities of each of the subgrid parameter values. This approach
also allows us to take into account potential systematic effects in the data and/or
simulations.

Because N-body simulations are too computationally expensive to be used
directly in MCMC-like methods, we make use of machine learning, specifically
emulation using Gaussian processes. While it is too expensive to run a new sim-
ulation for each MCMC step, we can train an emulator on a carefully sampled se-
lection of input simulations. The emulator then gives us the predicted observable
as a continuous function of the input parameters, which can be fed into any like-
lihood calculation code. Emulator-based methods have been used in combination
with semi-analytic models of galaxy formation (Bower et al., 2010; Vernon et al.,
2014; Rodrigues et al., 2017; Elliott et al., 2021) and have become particularly
popular for cosmology. By training emulators on dark-matter-only simulations,
their full non-linear matter power spectrum can be predicted with per cent level
precision (e.g. Heitmann et al., 2009, 2016b; Euclid Collaboration et al., 2019;
Angulo et al., 2021; Moran et al., 2022).

We directly emulate our calibration targets: the SMF and the gas fractions
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in groups and clusters. This allows us to create a continuous simulation-based
model that can be compared with observations. With the emulator we can use
MCMC to directly fit the subgrid physics parameters to the observational data,
while modelling statistical and systematic errors in both the simulations and the
data. This procedure not only gives us a well-calibrated model, but also lets us
determine the maximum variations allowed by the model. In this way our re-
sulting simulations can provide upper and lower limits on the expected baryonic
effects. More general machine learning techniques have been used to calibrate
hydrodynamical simulations. Jo et al. (2023) calibrate to baryonic observables in
the (25 Mpc)® volumes of the CAMELS project (Villaescusa-Navarro et al., 2021)
and Oh et al. (2022) apply a similar methodology to zooms of Milky Way haloes.
However, these methods have not been applied to simulations of large cosmolog-
ical volumes and they have not accounted for possible observational biases.

This paper is structured as follows. In Section 2.2 we describe the most rel-
evant aspects of our simulation method and galaxy formation models. In Sec-
tion 2.3 the reasoning for our calibration targets is explained, and we describe our
compilation of data and how we include potential observational and simulation-
originated biases in our analysis. In Section 2.4 we describe how we obtain the
training data for the emulators. We also discuss how the emulators are trained
and how we estimate the uncertainty in the predictions of the emulators. We de-
scribe our likelihoods and our fitting method in Section 2.5. In Section 2.6 we
show the results of fitting the emulators at the three FLAMINGO resolutions. We
also discuss how the emulators can be used to better understand subgrid physics
using parameter sweeps and we use the emulator to find models that skirt or ex-
ceed the observational allowed range for the cluster gas fractions and the SMF.
Finally, we summarise our method, strategy and results in Section 2.7. In this
work, Rsgo. is defined as the radius within which the mean internal density is
500 times the critical density. The radius Rsg(. also defines Msq., which is the
mass inside Rsqq,.

2.2 Simulations

The simulation methods and galaxy formation model are described in detail in
Schaye et al. (2023). Here we will provide a summary of the most relevant as-
pects. We describe in more detail the subgrid prescriptions that we calibrate in
this work, namely those for stellar feedback (§2.2.1), the growth of supermassive
black holes (§2.2.2), and AGN feedback (§2.2.3), and we will motivate the choice
of priors for the subgrid parameters that are varied (these are listed in Table 2.2).

All simulations in this work use the open-source code Swirr (Schaller et al.,
2023). Swrrr is an N-body gravity and smooth particle hydrodynamics (SPH)
solver that makes use of a fine-grained tasking framework and runs across multi-
ple compute nodes using MPI. Gravity is solved using the Fast Multiple Method
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Table 2.1: Numerical characteristics of the final Latin hypercubes of simulations.
The columns list: the resolution qualifier, comoving box size, number of parti-
cles (there are initially equal numbers of dark matter and baryonic particles),
initial baryonic particle mass, dark matter particle mass, comoving gravitational
softening length, maximum physical gravitational softening length.

Resolution L N my MpMm €com €prop

(cMpc) (Mo) Mp) (ckpe)  (pkpe)
Low [m10] 400 2x360° 8.56x10° 4.52x10'0 446  11.40
Intermediate [m9] 200 2x360% 1.07x10° 5.65x10°  22.3 5.70
High [m8] 100 2x360% 1.34x10% 7.06x10%  11.2 2.85

(Greengard & Rokhlin, 1987). We use the SpueNix SPH scheme (Borrow et al.,
2022b) with a Wendland (1995) C? kernel. Massive neutrinos are implemented
into Swirt via the 0f method of Elbers et al. (2021).

Initial conditions are generated using a modified version of MoNoroNIC (Hahn
et al., 2021) that includes massive neutrinos. We use unperturbed initial condi-
tions for the neutrino particles. We do not include large scale neutrino pertur-
bations in the initial conditions, as these have a negligible effect in the small box
sizes used for this work. We adopt the "3x2pt + all’ cosmology from Abbott et al.
(2022) (Qp = 0.306, Qp, = 0.0486, a5 = 0.807, Hy = 68.1, n, = 0.967) with a min-
imal neutrino mass of 0.06 eV. The particle masses and gravitational softening
lengths corresponding to the three different resolutions that we will consider are
listed in Table 2.1.

For simulations with volumes as large as FLAMINGO, it is currently impossi-
ble to resolve all the processes that are important for galaxy formation. Therefore,
we make use of subgrid models. FLAMINGO builds upon the models of OWLS
(Schaye et al., 2010), used for Cosmo-OWLS (Le Brun et al., 2014), BAHAMAS
(McCarthy et al., 2017), and EAGLE (Schaye et al., 2015), ported from the code
GADGET (Springel, 2005) to SwiFr.

We use the radiative cooling tables from Ploeckinger & Schaye (2020), which
are based on photo-ionisation models run with cLoupy (Ferland et al., 2017) that
include both the metagalactic and interstellar radiation fields, and that account
for self-shielding, dust, and cosmic rays.

As we are unable to resolve the multiphase interstellar medium, we follow
Schaye & Dalla Vecchia (2008) and impose a temperature floor. The pressure of
gas with hydrogen number densities n; > 107* cm™ and an overdensity greater
than 100 is limited from below to P/kg = 800 K (n15/107% cm™3)#3, where kg is
the Boltzmann constant.

During the simulation gas particles can be stochastically converted into star
particles following the description of Schaye & Dalla Vecchia (2008). Particles
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with total hydrogen number density”® ny > 107! cm™3

, an overdensity > 10 and
within 0.3 dex of the temperature floor are stochastically allowed to convert into
stars with a probability given by the particle’s star formation rate,

) ol Y (n-1)/2
i, = mgA(1 Mgpc™) (Eng) , (2.1)
where my is the gas particle mass, y = 5/3 is the adiabatic index, and G is the grav-
itational constant. The star formation rate is derived such that self-gravitating
discs reproduce the observed Kennicutt-Schmidt relation (Kennicutt Jr., 1998;
Kennicutt Jr. et al., 2007). We assume the gas fraction, fg, is unity, A = 1.515 x
1074 Mg yr~! pc?,and n = 1.4.

For the low-resolution simulation we were forced to relax the star formation
parameters, as the default prescription was unable to form enough stars, even in
large haloes and without stellar feedback. For low resolution, all particles with
density ny > 1072 cm™3
forming.

Each stellar particle is treated as a simple stellar population with a Chabrier
(2003) initial mass function (IMF). Following Wiersma et al. (2009), we model
stellar mass loss and track the abundances of the individual elements H, He, C,

, overdensity > 10 and temperature T < 10° K are star

N, O, Ne, Mg, Si, and Fe. We also include type Ia supernova with rates taken from
Schaye et al. (2015).

3Due to a bug, in the intermediate-resolution simulations gas particles with a metallicity equal
to exactly zero were only allowed to form stars at densities higher than 10 cm~3. This had little to no
effect on any results at resolved stellar masses, but it did reduce the number of stars formed in the
lowest-mass galaxies. Fixing this bug would potentially have allowed us to match the SMF to stellar
masses corresponding to fewer than 10 particles.



Table 2.2: Priors and best-fitting values for the subgrid parameters for each of the three simulation resolutions. Low-resolution
simulations do not include stellar feedback. The rows titled "Median+CL’ give the median and the 16th and 84th percentile
confidence level (CL) obtained from the posterior of the fits. The rows titled ’best-fitting’ list the maximum likelihood value
from the fitting, which is our fiducial value. The last row 'Log’ indicates whether the parameter is sampled logarithmically.
The best-fitting values for the jet model are listed in Table 2.8 and the priors for the jet model are listed in Table 2.9.

Resolution Parameter fsn Avgn log o ATacn [K] | Beu
Prior [0.2,0.9] | [80,400] | [7.7,8.9] [0.0,0.9]

High-res [m8] Median+CL | 0.56%3, | 169782 8.03*013 0.23%29,
best-fitting | 0.524 259 8.07 0.038
Prior [0,0.5] | [200,800] | [7.5,8.5] [0.1,0.9]

Intermediate-res [m9] | Median+CL 0.20f8:(1)é 479jg; 7.843%8 0.55f8;%2
best-fitting | 0.238 562 7.95 0.514
Prior - - [7,9.5] [0,3]

Low-res [m10] Median+CL | - - 8.26f8:%g O.SOfg:%Z
best-fitting | - - 8.29 0.373
Log No Yes Yes No
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2.2.1 Stellar feedback

Although we will often refer to stellar feedback as supernova feedback, it may
also represent other sources of energy released by massive stars that are unre-
solved by our simulations such as stellar winds, radiation pressure or cosmic
rays.

Stellar feedback is implemented kinetically. The energy budget is normalised
to the expected kinetic energy from core collapse supernovae, assuming that each
star with a mass between 8 and 100 M, injects 10! erg of kinetic energy into its
surrounding medium. A fraction fqy of this energy is assumed to be coupled to
the ISM on scales resolved by the simulation and is used to kick neighbouring gas
particles with a target velocity Avgy. We use the method of Chaikin et al. (2022a)*
to inject the kinetic energy in a statistically isotropic manner while ensuring that
both momentum and energy are conserved. Note that if the relative velocities
between the star and gas particles are nonzero, energy conservation results in
differences between the actual and target kick velocities.

Following Dalla Vecchia & Schaye (2008) and Richings & Schaye (2016), we
inject the kinetic energy probabilistically during each time step after the star par-
ticle has formed. The probability that a star particle kicks a given SPH neighbour
is
JsNAEgnn (¢ At)

’ (2‘ 2)
Mngh Avdy

Pxick (foN, AVsN, Mingh, £, At) = 2
where AEgy denotes the amount of energy released by the star particle of age ¢
during a time step At and my,gy, is the total gas mass in the star particle’s SPH
kernel. The feedback efficiency, fsn, and the target kick velocity Avgy are the two
stellar feedback parameters that are varied during the calibration.

The effect of stellar feedback generally scales with fgy, which sets the amount
of energy that is injected. Based on the calibration of BAHAMAS (McCarthy
et al., 2017) and after some experimentation with runs in which we varied only
one parameter, we settled on prior ranges of 0.2 - 0.9 and 0 - 0.5 for high- and
intermediate-resolution, respectively. The low-resolution simulations do not re-
quire any stellar feedback at all because of the strong suppression of star forma-
tion due to the limited resolution and because galaxies in the regime where stellar
feedback dominates (stellar mass M, < 10!! M) are only sampled by < 10 stellar
particles.

If the kick velocity is too small, then stellar feedback ceases to be effective be-
cause of excessive radiative losses caused by the too-low post-shock temperatures
(the well-known numerical over-cooling problem, see Dalla Vecchia & Schaye,
2012) and/or because the velocities are small compared to the escape velocities.

4There is one difference w.r.t. the method described by the authors. In the case where a particle
would be kicked twice in a single time step, which we do not allow, we put the unused kick energy in
a thermal dump, instead of adding it back to the star’s feedback energy reservoir.
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The lower limits for Avgy are 80 and 200 km s~! for the high- and intermediate-
resolution simulations, respectively. Our additional tests showed that for lower
velocities the kicks stopped having a significant effect.

If the kick velocity is too large, then the feedback becomes poorly sampled,
thus limiting its effectiveness. Our aim is to calibrate the SMF down to masses
corresponding to just a few stellar particles. The expectation value for the num-
ber of kicks imparted by a single stellar particle is given by Chaikin et al. (2022a)

-2

fsN ( Avsn )
Ny =1.85 , 2.3
( kicks, SN> (025 400 km 871 ( )

where we assumed the stellar and gas particles to have the same mass. Based on
the above considerations and some small test runs, we limit the maximum kick
velocity to 400 and 800 km s~! for the high- and intermediate-resolution simu-
lations, respectively. This implies (Nyjcks, sn) = 2 and (Nyjcks, sy = 0.4 for high-
and intermediate-resolution respectively. There should be at least four kicks for
objects with 10 stellar particles at each resolution.

2.2.2 Black hole growth

Following Di Matteo et al. (2008) and Booth & Schaye (2009) we seed haloes with
black holes (BHs) during the simulation. Starting at z = 19 we run a friends
of friends group finder every time the expansion factor increases by a factor
1.00751. We seed a BH in every group that is above a certain mass threshold
and that does not already have a BH. We seed BHs in haloes above a mass of
2.757 x 101! Mg (mg/1.07 x 10 M), corresponding to roughly fifty dark matter
particles at each resolution. Because the Bondi & Hoyle (1944) accretion rate is
proportional to the square of the BH mass, an increase in initial mass can cause
BHs to grow much earlier. We use a BH seed mass of 10> M, for intermediate and
high resolution, and of 107 M, for low resolution. The seed mass had to be in-
creased for low resolution, since the rapid growth phase of the BHs corresponds
to unresolved galaxy masses (see e.g. Bower et al., 2017; McAlpine et al., 2018).

As we do not properly resolve dynamical friction at our resolution, BHs are
repositioned by hand to the minimum of the gravitational potential following the
method of Bahé et al. (2022)°. For BH mergers we also follow the prescription by
Bahé et al. (2022).

5The exclusion of the BH from the calculation of the gravitational potential used for repositioning
was only done for high and low resolution, as we only became aware of its importance later. This
significantly strengthened the quenching of star formation in galaxies with large stellar masses for
our high resolution simulations.
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Besides merging with other BHs, BHs grow via accretion of gas, which is as-
sumed to occur at a modified Bondi-Hoyle rate,

2,2
AnGe mgyp
3/2’

o)

(2.4)
(cs2 + V3

Macer = &

where mpy is the BH mass, ¢ is the sound speed of the gas, p is the gas density, ¢
is the speed of light and vgy is the velocity of the BH with respect to its environ-
ment. The factor a is a boost factor that is added because we do not resolve the
Bondi radius and because we lack the resolution to model the phase structure of
the ISM. We use the parametrization of Booth & Schaye (2009),

- BeH
a = max ( ) 1, (2.5)
TZH#

where nyp, = 0.1 cm~3, which corresponds to the density threshold for star forma-
tion in the intermediate- and high-resolution simulations (we use the same value
for all resolutions). The logarithmic density slope By is a free parameter that
we vary during the calibration. After some experimentation using simulations
where only a single parameter is varied between runs, we settled on priors of
0-0.9,0.1-0.9 and 0-3 for high , intermediate and low resolution, respectively.

The gas accretion rate is capped at the Eddington (1913) rate. Following Bahé
et al. (2022), the BH is allowed to ‘nibble’ on neighbouring gas particles until the
gas particles only have half of their original mass remaining.

2.2.3 AGN feedback

In all but two of the simulations AGN feedback energy is injected into the
medium surrounding the BH in thermal form using the prescription from Booth
& Schaye (2009). The model used in the remaining simulations is based on jet
feedback and is described in §2.2.3.

While accreting gas, the BH adds a fraction €,ef = 0.015 of the accreted rest
mass energy to an internal feedback energy reservoir, where €, = 0.1 is the as-
sumed radiative efficiency and e¢ = 0.15 is the assumed AGN feedback efficiency,
i.e. the fraction of the radiated energy that is coupled to the gas surrounding the
BH. Once enough energy is available to increase the temperature of ny,; gas par-
ticles by ATagn, this energy is injected into the neighbouring gas particles. The
energy injected in a single event is proportional to e, ATagNn, Where ATagn is
the increase in temperature that is applied to #pe,; neighbours. We find that it
is the product npe,;ATagN that is most important for regulating how much gas
is expelled from clusters, and that ATygN and e, are largely degenerate. We
therefore fix npe,; to one and use ATy as a free parameter that is varied in the
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calibration. Following the findings by Chaikin et al. (2022b), we inject the ther-
mal energy into the nearest neighbour of the BH, which gives results that are
nearly indistinguishable from a statistically isotropic approach.

To choose the prior for ATygn we take a similar approach as for the stellar
feedback kick velocity. However, instead of avoiding velocities that are too low
to have an effect, we now have to make sure that feedback raises the temperature
to a value sufficiently high to avoid catastrophic numerical over-cooling. The
sampling issue is also slightly different than for stellar feedback. While stellar
feedback is limited to young stars, BHs can inject energy throughout their lives
and hence the time sampling of these events becomes important. If the time be-
tween AGN feedback events becomes too long, then the BHs will be unable to
self-regulate. If BHs cannot regulate their growth, then this can lead to an unre-
alistic mass distribution of both the BHs and their host galaxies. To summarise,
we have two main considerations:

1. What is the ATygN below which radiative losses are already severe at injec-
tion for the densities at which stars form?

2. What is the ATpgn above which the time between AGN events becomes
longer than the BH growth time?

Dalla Vecchia & Schaye (2012) demonstrated that the density above which
thermal feedback becomes ineffective can be predicted based on the ratio of the
radiative cooling time, which depends on the density and temperature, and the
sound crossing time across a resolution element, which depends on the numeri-
cal resolution. According to their equation 18, feedback becomes inefficient for
densities exceeding

ny,, = 0.25 cm*3(

-1/2
ATacy )3/2 ( "'g ) (2.6)

1075 K 1.09x 10° M,

Comparing this to our threshold for star formation (15 = 107! cm™ for interme-
diate/high resolution and 1073 cm™3 for low resolution), yields minimum values
of log, g ATagN/K = 6.9, 7.2, and 6.2 for the high, intermediate, and low resolu-
tion, respectively. However, the above equation assumes radiative losses to be
dominated by Bremsstrahlung and Dalla Vecchia & Schaye (2012) showed that it
underestimates the radiative losses for ATygN < 107 K. For this reason we do not
consider values below 107 K. On the other hand, since we inject the energy at the
end of the time step, the feedback can do work during a single time step even
if the temperature is too low to avoid overcooling, which means that somewhat
lower values than implied by the above equation (but still higher than 107 K) may
still be of interest.

If we define Ampy to be the gas mass that must be accreted for the BH to have
sufficient energy to heat a single gas particle, then the ratio of the time between
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AGN feedback events and the time of BH growth is given by (Booth & Schaye,
2009),

tAGN _ Ampu/tigy (2.7)
tgu  mpu/Mipy
— mng(l B €r) nheatATAGN (2 8)
(y = 1)pmyesec>  mpy '

_ m -1
z0.98(1 e,) 8 ( Cter ) X
0.9 1.09 x 109MO 0.015

-1
( MheatATaGN ) My
1085 K 107Mg )

(2.9)

where y = 5/3 is the ratio of specific heats and y = 0.6 is the mean particle mass
in units of the proton mass my. Given that we expect to need AGN feedback
to quench star formation in galaxies with stellar mass M, > 10'! M, and that
in this mass range BHs are observed to have masses Mgy ~ 1073 M, (Hiring &
Rix, 2004), we need the BHs to become self-regulating when Mpy <« 108 M. The
condition tagn < tgy then implies that for our npe, = 1 we require ATxagn S
1083K for intermediate resolution, and values 8 times higher (lower) for high
(low) resolution.

Based on the above considerations and some small test runs, we adopted the
flat priors log,, ATygn/K =7.7-8.9, 7.5 - 8.5, and 7.0 — 9.5 for high, intermedi-
ate and low resolution, respectively. For both intermediate and high resolution
the prior ranges are smaller than what is possible based on our considerations.
From our test runs we found that these ranges bracket a sufficiently large range
in the observables we are interested in and the smaller ranges lead to slightly
better sampling of the parameter space around the best-fitting model. For low
resolution the prior extends to (unnecessarily) high values, but we will see that
the best-fitting value is actually similar to those for the other resolutions. We
can afford a larger prior range for the low resolution simulations as we are only
sampling two parameters.

Jet feedback

In addition to the fully thermal AGN feedback scheme described above, we also
calibrate a kinetic AGN feedback variation. The model used for kinetic AGN
feedback is based on the spin-driven jet feedback model described by Husko et al.
(2022), implemented into swirr. In this model energy is injected by kicking two
particles on opposite sides of the BH, according to its angular momentum vec-
tor. The angular momentum of the BH is calculated in a subgrid model for an
accretion disc that is based on general relativistic magneto-hydrodynamics sim-
ulations of single BHs in the low accretion regime (< 0.01 Eddington). For more
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details see Husko et al. (2022). The spin from black holes that remains after
mergers is computed according to the description by Rezzolla et al. (2008).

Due to the relatively low resolutions used for FLAMINGO, we make some
simplifications to the complete model. As we intend for the jet model to be max-
imally different from the thermal feedback mode, we do not switch from kinetic
to thermal feedback at high Eddington rates, and instead use the kinetic feed-
back at all accretion rates. Instead of using the efficiencies based on the subgrid
accretion model, we fix the jet efficiency to e = 0.015. This efficiency is equal
to the combined coupling and radiative efficiency, €fe;, for the thermal mode
feedback. This implies that for each unit of mass accreted by the BH, the same
amount of energy becomes available in the jet model as for the fiducial thermal
model. While we do not use a spin-dependent feedback efficiency, we do still use
the subgrid model to track the angular momentum vector of the BH and use it to
select the direction in which gas particles are kicked. The BH accretion model is
identical to that described in §2.2.2, and for calibration of the jet model we vary
the boost factor fpy.

When the BH has accreted enough mass, two neighbouring gas particles are
kicked with a total kinetic energy equal to

1 2
Ejet =2x Emgvjet,

(2.10)
where vj; is the target jet velocity (we use the term target because it is the energy
that is fixed, similarly to the supernova kicks, see §2.2.1), which is a free param-
eter that we calibrate. The jet velocity plays a role similar to ATy for the case
of thermal feedback. As the energy is injected in kinetic form, the model is less
affected by thermal losses, but picking velocities that are too low will make the
gas unable to escape to large distances (see Husko et al., 2022). For very high val-
ues we again run into sampling issues. Based on these considerations and some
initial tests, we use flat priors over the range of vjet/(km s‘l) =10%7 -1035, cor-
responding in energy to ATygn/K =~ 1071 = 1087, We only calibrate this model at
intermediate resolution.
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Figure 2.1: Compilation of observational data used for calibration. On the left we
plot the SME. On the right we plot the cluster gas fraction versus total mass, both
measured at R5gg.. Where available we display the 10 measurement errors, which
do not include intrinsic scatter. The X-ray data are binned from a compilation of
available data, see §2.3.2, except the lowest mass point, which is obtained from a
fit by Lovisari et al. (2015). We show the individual clusters as black dots. Note
that the X-ray data are plotted without any correction for the hydrostatic mass
bias. For this work we use the Driver et al. (2022) data for the SMF, and the X-ray
and Akino et al. (2022) data for the gas fractions.



Table 2.3: Mass ranges in Mg, used for each observable when fitting the emulator to data. The values are rounded because the
exact ranges vary with the values of the observational bias factors.

Observable SMF M, lower limit SMF M, upper limit  fgss s00c Ms00c lower limit  foas 500 Ms500c upper limit
High—res [m8] 108.67 1011.50 1013.50 1013.73
Intermediate-res [m9] 10°°? 101150 101350 101436
Low-res [m10] 101117 101150 101350 101453
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2.3 Observational data and biases

Before we can start to calibrate our simulations, we need to have observational
data to compare with our simulations. We calibrate to the galaxy stellar mass
function (SMF) and the gas fractions in groups and clusters (fgas 500c(Ms00c))-

One of the goals of the FLAMINGO simulations is to predict galaxy clustering
and cross correlations between galaxies and other tracers of the matter distribu-
tion. The SMF allows us to constrain the stellar content of haloes as a function
of their mass. This is not only crucial for the prediction of observations using
galaxies, the stellar mass also directly affects the distribution of dark matter in
haloes, and the orbits of subhaloes. Although matching the SMF does not ensure
that each halo contains the correct stellar mass, it suggests the relation is at least
statistically plausible provided the model assumes the correct cosmology.

Besides galaxy clustering, we also wish to use FLAMINGO to investigate other
cosmological observables tracing the distribution of matter, such as X-ray emis-
sion, the Sunyaev-Zeldovich (SZ) effect and lensing maps. From studies by Sem-
boloni et al. (2013), Van Daalen et al. (2020) and Salcido et al. (2023) we know
that the gas fractions in clusters have a large impact on the matter power spectra
on scales relevant for e.g. cosmic shear. By calibrating to the observed gas frac-
tions, we can also make robust predictions for the distribution of gas expelled
from group/cluster cores.

We calibrate to the same observables as were used for the BAHAMAS simu-
lation (McCarthy et al., 2017, 2018). In this section we will discuss the data that
we considered and the observational biases that we account for.

2.3.1 The galaxy stellar mass function

Constraining the SMF has been the goal of a large number of studies, many of
which are based on the SDSS (Li & White, 2009; D’Souza et al., 2015; Bernardi
et al.,, 2013, 2017) or the more recent GAMA survey (Baldry et al., 2012; Wright
et al., 2017; Driver et al., 2022). A compilation of these data sets is shown in the
left panel of Fig. 2.1. It is clear that there are substantial systematic differences
between some of the different groups that have tried to measure the SMF, par-
ticularly at the low- and high-mass ends. However, some of the most significant
outliers are older results. While there are still discrepancies at the high-mass end,
the results from the three most recent studies, D’Souza et al. (2015); Bernardi
et al. (2017); Driver et al. (2022), are in reasonable agreement over a large part
of the mass range. Instead of trying to combine different data sets, we limit the
fitted mass range to M, < 10> M, and we choose to use the most recent GAMA
result from Driver et al. (2022) at z = 0. Not only is this the most recent study,
it also provides a useful prior for possible biasing due to cosmic variance. The
upper mass limit also decreases the possible bias we get due to our choice of sim-



60 Chapter 2. Calibration using emulators

ulation aperture (see §2.4.2 and Appendix 2.A for more details). We always set a
simulation-resolution dependent lower mass limit on the mass range we use for
fitting. The mass ranges we use can be found in Table 2.3.

Fitting the SMFs from simulations to observations requires special care. There
are some important differences/sources of uncertainty that need to be taken into
account:

1. Observations suffer from random errors in measuring the mass. while sim-
ulations have no mass measurement errors (at least for a fixed definition of
a galaxy, i.e. for a given subhalo finder). Simulations do suffer from ran-
domness errors (see Borrow et al., 2022a), as discussed by these authors,
this issue is negligible for our analysis because we consider large ensembles
of galaxies..

2. Observations possibly suffer from systematic errors, which may originate
from spectral energy distribution fitting, corrections for dust extinction,
surface brightness profile fitting, and/or selection effects.

3. Observations may suffer from cosmic variance.

Before discussing how we take each of these effects into account, we note that the
uncertainty in the stellar IMF is not directly relevant because the observational
analysis and the simulations use the same IMF. The observed SMF also depends
on the assumed cosmology, but this is close enough to the one used in the simu-
lations to have a negligible effect on the comparison.

Random errors on the observed stellar mass

Symmetric observational scatter in the measured stellar mass will cause a sys-
tematic shift in the inferred SMF. Because there are more galaxies in lower mass
bins, it is more likely for galaxies to scatter to a higher mass bin than to a lower
mass bin. This is especially important at the high-mass end, where the SMF is
steep. This effect is known as Eddington (1913) bias. We account for it by adding
scatter to the simulation masses. We adopt the lognormal scatter from Behroozi
et al. (2019), which has a redshift-dependent standard deviation of

o(log;,M,) =min(0.070+0.071z,0.3) dex, (2.11)

where we sample the lognormal distribution for each galaxy. This then adds an
Eddington-like bias to the simulation results, consistent with observations.
Systematic errors in the observed stellar mass

There are systematic discrepancies between the different observations. The rea-
son for this is mostly found in the stellar population synthesis and dust correction
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models used, as the observed luminosity functions agree better between different
studies than the mass functions. However, at the FLAMINGO resolution, the
stellar masses can be predicted much more accurately than the star formation
histories, current-day star formation rates and dust extinction rates. Therefore,
calibration to the SMF is preferable over a direct comparison with the luminosity
function.

To account for potential systematic shifts in the observed stellar masses, we
include a stellar mass bias parameter

10g10(M*,obs) - loglo(M*,obs) + 10%10 b., (2.12)

where the bias b, is assumed to be independent of mass. Note that the sign is
defined such that a positive stellar mass bias implies the observations underesti-
mate the true stellar mass. We use a lognormal prior to constrain the bias param-
eter. The prior is taken from Behroozi et al. (2019) (their eq. 25) and is based on
the existing tensions between observed time-integrated star formation rates and
observed SMFs,

log,,b. = N(0,0.14), (2.13)

where N (p,0) is a normal distribution with mean y and standard deviation o.

We adopt a mass-independent bias. While a mass-dependent bias might have
improved the agreement between the data and the simulations, the mass depen-
dence is unknown and therefore there is no obvious parametrization of the mass
dependence. This implies the new free parameters would have no clear priors.
Additionally, we note that our decision not to fit above a stellar mass of 101> M,
has a similar effect as switching to a much higher stellar mass bias above this
mass.

Cosmic variance

Driver & Robotham (2010) showed that the error on the SMF due to cosmic vari-
ance can be 5-10 per cent for surveys like GAMA and the SDSS, depending on the
volume considered. Cosmic variance can bias the number density measurements,
because the survey may consist of slightly over- or under-dense regions. For our
mass range we assume that this effect is independent of mass (S. P. Driver, pri-
vate communication). To account for cosmic variance, we allow the observed
number densities to shift up and down slightly,

fobs _>f0bs+10g10(bcv)- (2~14)

Note that the sign is defined such that a positive cosmic variance bias implies
the observations underestimate the number density of galaxies. We constrain
this bias parameter with a Gaussian prior taken from Driver et al. (2022). They
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estimate the error due to cosmic variance to be about 6 per cent, so our prior is
given by
bey = N(1,0.06). (2.15)



Table 2.4: Overview of the cluster gas mass fraction data used for this work. The first column lists the reference from which
the data were obtained, the second column lists the number of objects, where ’fit’ indicates that the main result is a fitted
relation between Msgoc and fg,s 5000, the third column shows how the total mass was measured (HSE: X-ray data assuming
hydrostatic equilibrium; WL: weak gravitational lensing), and the final column contains comments on the selection method.

Reference N | Type | Selection

Vikhlinin et al. (2006) 10 | HSE | Nearby, relaxed, ambiguous X-ray limit
Maughan et al. (2008) 114 | HSE | NED Cross-match, z> 0.1

Rasmussen & Ponman (2009) 15 | HSE | Bright groups

Sun et al. (2009) 23 | HSE | 0.015 <z <0.13, resolved temperature profiles
Pratt et al. (2010) 31 | HSE | X-ray flux limited, z < 0.2

Lin et al. (2012) 94 | HSE | Infrared magnitude limited

Lagana et al. (2013) 126 | HSE | Crossmatch between Maughan et al. (2008) and SDSS; X-ray flux limit
Sanderson et al. (2013) 5 | HSE | Optical magnitude limit, ¢ < 500c km s~!
Gonzalez et al. (2013) 15 | HSE | Optical magnitude limit, 0.03 <z < 0.13
Lovisari et al. (2015) 20 | HSE | X-ray flux limited

Hoekstra et al. (2015) 50 | WL | X-ray flux limited

Pearson et al. (2017) 8 | HSE | GAMA r-band selection, N >12,z<0.12
Mulroy et al. (2019) fit | WL | X-ray luminosity limit

Lovisari et al. (2020) 120 | HSE | tSZ-selected from Planck data.

Akino et al. (2022) fit | WL | CI - X-ray selected, C2 no clear selection.
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2.3.2 The cluster gas mass fractions

Data for the cluster gas mass fractions, fgs 500, cOme in two varieties. They are
either obtained purely from X-ray observations, or from a combination of X-ray
and weak gravitational lensing observations where the latter are used to measure
the total cluster mass. For the X-ray only data, the density and temperature pro-
files fitted to the observations are used to measure the total mass assuming the
gas is in hydrostatic equilibrium (HSE). In both cases the gas mass is obtained
by integrating the density profile measured from X-ray observations out to the
measured value of Rsgo.. Table 2.4 summarises all the different sets of data that
we use.

As was the case for the SMF, there are biases that we need to account for when
we compare observations with simulations. There are four distinct issues that we
take into account:

1. At the low-mass end selection effects become important, because at fixed
halo mass objects with a higher gas content will tend to emit more X-ray
radiation. Any X-ray selected sample may therefore have gas fractions that
are biased high, particularly at low masses.

2. The measurement of total mass from X-ray data under the assumption of
HSE is well documented to be biased low (e.g. Hoekstra et al., 2015; Eckert
et al., 2016; Smith et al., 2016).

3. For the weak lensing data, we make use of the fits of the relation between
gas fraction and mass provided by the authors. The fits are preferred to in-
dividual measurements as the fits account for the selection function of the
sample. However, for our purposes the fits need to be sampled at particular
masses. This needs to be done in a way that limits the covariance between
the samples and that is representative of the data used (i.e. no extrapola-
tion).

4. As clusters are rare objects they are usually observed over a large redshift
range. Furthermore, because weak lensing is most efficient when the lens is
halfway between the observer and the background galaxies, weak lensing
observations tend to probe higher redshifts than X-ray data. Clusters evolve
over time, so we need to make sure the simulation samples are representa-
tive for the observational samples we compare them with.

For the cluster gas fractions the largest mass we can fit for is limited by the box
size of each simulation. The upper mass limit used for fitting therefore changes
with resolution (as we use a different box size for each resolution). The upper
limits can be found in Table 2.3.
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Table 2.5: Compilation of cluster X-ray gas fraction data used for calibration.
These values are for the DESYR3 cosmology (h = 0.681, (2, = 0.298). The val-
ues are obtained by taking the median of the X-ray data described in Table 2.4
in eight logarithmically spaced bins between 10'3% and 10'>0 M. The errors
are the absolute difference between the 16th or 84th percentile and the median
(whichever is largest), obtained by bootstrap resampling the median.

Ms00c fgas,SOOc
(log;oMo)

13.89 0.083 +0.002
14.06 0.094+0.003
14.23 0.105+0.005
14.40 0.115+0.008
14.57 0.130+0.002
14.74 0.130+0.002
14.91 0.139+0.003

X-ray data

The first set of gas fraction data we describe is the X-ray (or HSE) data. For each
data set we store Msgoc and fgas500c, With asymmetric errors where available,
and correct the data to the FLAMINGO cosmology (Msg. oc b1, fgas,500¢ o h13).
The combined data set has 581 objects but contains duplicates. For each object
that appears more than once we calculate a new data point by taking an un-
weighted mean of the different measurements. The mean is taken in both M5,
and fgas500c- Because the duplicates are often based on (in part) the same data,
the errors will not be independent and we combine them via

1 N
o? = NZUI?, (2.16)
i

where N is the number of times a single object appears in the set. This leaves
us with 533 objects. Note that we do not use the errors for the re-binning, as we
make use of bootstrap re-sampling to compute the errors.

We need to consider redshift evolution. The emulators will be trained on
simulation snapshots corresponding to a single redshift. Imposing a redshift cut
of z < 0.25 causes the median redshift of the X-ray sample to become 0.1, thus
allowing us to compare with simulation snapshots at z = 0.1. The redshift cut
reduces the sample to 310 objects. The individual masses and gas fractions are
shown as black dots in Fig. 2.1.

We combine the X-ray measurements by computing the median gas fraction in
eight logarithmically spaced hydrostatic mass bins between 10138 and 10!>9 M.
For each bin, the error on the median is obtained by taking the difference between
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the median and the 16th—84th percentiles obtained from bootstrap resampling
the objects. This gives us asymmetric errors around the median. As our likeli-
hood uses symmetric errors, we use only the greater of the positive and negative
errors. The tabulated data points can be found in Table 2.5.

Furthermore, selection effects are expected to be most prevalent at lower halo
masses. The median observed gas fraction as a function of mass shows a clear
trend-break at M5 psg ~ 1013® M. Below this mass the gas fractions no longer
decrease, but instead plateau, a behaviour that deviates from what is expected
for an unbiased sample (e.g. McCarthy et al., 2017). To deal with this we impose
a mass cut at a hydrostatic mass of Msgg. ysg > 10138 M, but add the fit from
Lovisari et al. (2015) at their median mass (4 x 10!3 M) as a separate data point.

We account for hydrostatic mass bias by adding a constant bias term to the
HSE masses,

log; o Mso0c = 10819 Msooc,sE — 1081 o(bHsE)- (2.17)

Note that values bysg < 1 imply that the hydrostatic mass estimate underesti-
mates the true mass. We neglect the effect of hydrostatic bias on the gas fraction
because it is comparatively small (McCarthy et al., 2017). This is because both
the total and gas mass increase with increasing Rsoo.. The measured gas fraction
will differ only at the level of the change in cumulative gas fraction between the
true and biased Rj5¢q.. This is expected to cause only mild changes in the gas frac-
tion (see e.g. fig. 6 of Velliscig et al., 2014). Before calculating the median that
we compare with the simulation we thus adjust all the observed HSE masses. By
combining both X-ray and weak lensing observations, we can constrain the hy-
drostatic bias. However, we found that our compilation of data on its own is not
constraining enough without the use of a prior. To define our prior, we take the
values 0.72 + 0.08 from Eckert et al. (2016) and 0.76 + 0.06 from Hoekstra et al.
(2015) and combine the two to obtain the Gaussian prior

buse = N (0.74,0.10). (2.18)

Eckert et al. (2016) and Hoekstra et al. (2015) estimate the hydrostatic mass bias
by directly comparing the masses they obtain from weak lensing and from X-rays.

Weak lensing data

We complement the X-ray data with the latest HSC-XXL weak gravitational lens-
ing data from Akino et al. (2022). Higher-mass data from Mulroy et al. (2019) and
Hoekstra et al. (2015) are available and plotted in Fig. 2.1, but the box size used
for our calibration runs is too small to make use of them. To compare with the
weak lensing data, we make use of the power-law fits to the relation between the
gas fraction and mass given by the authors. These fits take selection effects into
account. Because the power-law fits have two free parameters, sampling them
at more than two masses would result in strong covariance between the sampled
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points. We therefore use the fit to create two data points that are spaced equally
far from the pivot used by the authors. This gives us feas 500c(Ms00c = 1013°> Mg) =
0.054+0.010 and fyas 500¢(Ms00c = 101> M) = 0.106 +0.023. Due to the limited
box size, we use only the lower, Msgo, = 1013 M, point for fitting high- and
intermediate-resolution simulations. For low resolution we are able to include
the second Msgg. = 10145 M, point.

The median redshift of the HSC-XXL sample is z = 0.3. We therefore construct
a separate emulator for fg,s 500c at z = 0.3, which we use to fit the weak lensing
data. The fits make use of self-similar scaling to move the different clusters to
the same redshift, so we could have corrected them to the redshift z = 0.1 used
for the X-ray data. However, we prefer to use a redshift close to that of the actual
sample, to minimize the size of the correction. Akino et al. (2022) give both the
weak lensing inferred and the true M5, as they correct for the expected bias
on the weak lensing inferred Ms(o.. We make use of their calibrated true Msgq,
masses.

2.4 Emulator construction

Cosmological hydrodynamical simulations are too expensive to be run for each
step in an MCMC chain used to evaluate likelihoods. In order to use simulation
outputs in MCMC methods, we therefore make use of emulators trained on a
set of simulations. Emulators are used to interpolate results in the parameter
space between training simulations. They are able to predict the output of the
simulations as a continuous function of the input parameters, in a fraction of
the original computation time. This method has previously been applied to the
matter power spectrum (e.g. Heitmann et al., 2009, 2016b; Euclid Collaboration
etal., 2019; Angulo et al., 2021) and to baryonic observables (e.g. Oh et al., 2022;
Jo et al., 2023). By using emulators, we can interpolate between the results of a
set of training simulations and obtain a fully continuous prediction of how the
simulation responds to changes in subgrid parameters.

2.4.1 Training sets

The first step in setting up the emulator is to create a training set. In our train-
ing set we want to vary those subgrid parameters that we know are important
for the calibration. As discussed in Section 2.2, for the intermediate- and high-
resolution simulations we vary the following four parameters: the stellar feed-
back efficiency, fsn, the target kick velocity for stellar feedback, Avgy, the power-
law slope of the density dependence of the black hole accretion boost factor, gy,
and the AGN heating temperature, ATxgn (vjet, the target kick velocity for AGN
feedback in the jet model). For the low-resolution simulations we do not require
stellar feedback and therefore vary only the last two parameters. The ranges over
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which the parameters are varied are motivated in Section 2.2 and listed in Ta-
ble 2.2 (Table 2.9 for the jet model).

To optimise the parameter space, we make use of a Latin hypercube, first pro-
posed by McKay et al. (1979). To set up a Latin hypercube with N, nodes, we
start with an ordered list of Ny, independent samples along every dimension
of the hypercube, where the number of dimensions equals the number of sub-
grid parameters that are varied. These samples are then combined and shuffled
to create a set of Ny, points O that are distributed uniformly within the hyper-
cube, where in our case 6 = (fsN,log,( Avsn, fpr,10g, ) ATagN) for intermediate
and high resolution, and 0 = (Bpy,log;, ATagN) for low resolution. Our crite-
rion for optimising the sampling is the 'maximin’ approach, which maximises the
minimum distance that sampled points are away from each other. An in depth
explanation of how the method works is provided by Heitmann et al. (2009). We
apply to each sample a random shift of at most half the average spacing between
samples. We then run the Ng;,,; simulations corresponding to the nodes of the
Latin hypercube.

We use the public package swirTemuraTor® (Kugel & Borrow, 2022), built on
the package GeorGe (Ambikasaran et al., 2015a), to set up the Latin hypercube as
well as to train and test the emulators. SWIFTEMULATOR streamlines the emulation
process for results obtained from Swirt runs. Within sWIFTEMULATOR we use the
Latin hypercube generator from pYDOE (Baudin et al., 2012).

We use Ngjms = 32. The sampling of parameter space provided by the Latin
hypercube used for intermediate resolution is shown in Fig. 2.2. The box sizes
used for the training are (100 Mpc)3, (200 Mpc)® and (400 Mpc)? for high, in-
termediate, and low resolution, respectively. The volume is a compromise be-
tween computational cost and the maximum mass for which we train the emu-
lator. Each run cost ~ 800, ~ 1300 and ~ 1600 cpu hours for low, intermediate
and high resolution respectively. Using single simulations with an eight times
larger volume at each resolution and with the results of Schaye et al. (2023), we
have verified that these box sizes are sufficiently large for box size effects to be
negligible with respect to the production runs.

2.4.2 Obtaining the required simulation output

From our simulation we take three snapshots at z = 0, 0.1 and 0.3. For each
snapshot we find haloes and subhaloes using VELOCIrarTOR (Elahi et al., 2019b;
Canas et al., 2019). After an initial friends of friends group search it uses the full
6-D phase space information to disentangle the central and satellite subhaloes.
One of the difficulties of comparing with data, is that we have to choose
how to define the edge of simulated galaxies. Observed cluster gas mass frac-
tions are measured within Rs5go.. For the stellar masses needed to compute the

6 https://swiftemulator.readthedocs.io/en/latest/
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Figure 2.2: The sampling of parameters in the 32-node Latin hypercube used to
train the emulator for the intermediate-resolution simulations.
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SME, the situation is less clear. Ideally, we would create mock observations, fit
them with Sérsic profiles and integrate these to obtain stellar masses, which is
the procedure adopted by observational studies. This was recently done for the
EAGLE simulation by De Graaff et al. (2022). However, the resolution of the
FLAMINGO simulations is too limited to mimic the observational strategy. As
shown by Schaye et al. (2023), FLAMINGO significantly overestimates the sizes
of low-intermediate mass galaxies, which means we cannot create realistic vir-
tual galaxy observations. Based on the findings of De Graaff et al. (2022), we
choose to calibrate the SMF using a 3D aperture with a radius of 50 kpc for the
simulations. A comparison between different choices of aperture can be found in
Appendix 2.A, where we show that the aperture becomes only important above a
stellar mass of ~ 1011 M,

Before computing the galaxy SMF, we first add random errors to the simula-
tion stellar masses as described in §2.3.1. The SMF is then sampled in 25 loga-
rithmically spaced mass bins between 10° Mg, and 2 x 10'2 M, for intermediate-
and low-resolution simulations, and 40 bins between 108 Mg and 2 x 10'3 M, for
high-resolution simulations. We choose to use a finer binning than is available for
the observational data to allow the emulator to capture the finer features of the
predicted SMEF. Tests with different binning strategies show this had no effect on
the results. We have enough galaxies across the fitted mass range for the Poisson
errors to still be very small even with finer binning. The uncertainty we provide
to the emulator is the Poisson error for each bin.

For the gas fraction we instead opt for an adaptive binning strategy. While
the simulation volumes used for the calibration are large enough to constrain the
SMF over the adopted mass range, at the high cluster mass end, we always run
out of clusters before we run out of data to compare with. For all resolutions
we use 20 bins between Msq. of 10'3 and 10> M, although we never manage to
make use of this entire range. As the higher mass bins start to run out of objects,
we allow the highest mass bin to stretch to include a sufficient number of objects.
We require each bin to contain at least ten objects. We also limit the stretching
of the bin to half the original bin width. The uncertainties we provide to the
emulator are based on the 16th—84th percentiles. As the emulator only takes
symmetrical errors, we take mean of the absolute difference between the median
and 16th percentile and the difference between the median and 84th percentile.
For both the SMF and the cluster gas fraction we discard any empty bins.

2.4.3 Training using Gaussian processes

After measuring the SMF and cluster gas fraction for each node of the hypercube,
we can train an emulator for each observable. Because each individual node of the
Latin hypercube requires a cosmological hydro simulation, we are operating in a
regime where we have a limited number of samples. We also know a priori that
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the observables we want to emulate (i.e., the galaxy number density and group
and cluster gas fractions) vary smoothly with mass and with the values of the
subgrid parameters. Both these properties are in the regime in which Gaussian
processes give excellent predictive power with respect to the input data (see e.g.
Rasmussen et al., 2004; Rasmussen & Williams, 2006).

We set up a different Gaussian process for each relation we emulate. We com-
bine the mass (either stellar or Ms5(.) and subgrid parameters into a single input
data vector x = (log,, M, 0), from which the emulator then predicts the depen-
dent quantity, which is either the number density of galaxies, f(M.,), or the gas
fraction, fgas,500c- Each emulator thus has N +1 parameters, where N is the num-
ber of subgrid parameters that are varied. In order to limit the dynamic range, we
transformed many of the inputs to log-space. This includes the masses (aperture
stellar mass or Msgq.), the values of the SMF and the two subgrid parameters
that are sampled in log-space (Avsy and ATagy). This is an important step as
it greatly increases the smoothness of the emulated relations, making it much
easier for the emulator to give accurate predictions. As the input relations are
smooth over the range we are interested in, we do not require any other transfor-
mations of the input. We feed the data directly into the Gaussian process. We use
a squared exponential kernel

(x—x)TO 1 (x-x)

k(x,x") =exp|- 5 ,

(2.19)

where @ represents a diagonal matrix containing the hyperparameters that set
the scale for each input parameter, and x and x’ are two positions in parameter
space. The hyperparameters are optimised based on maximising the marginal
likelihood (see Rasmussen & Williams, 2006). As we train a separate Gaussian
process for each relation, we also have a separate set of hyperparameters for each
relation. We have verified the posteriors of the hyperparameters to ensure that
the values we use are well converged.

2.4.4 Error estimation

It is important to verify that the emulator is able to give accurate results before
we use it to find best-fitting subgrid and bias parameters. Moreover, we need
to quantify the accuracy of the emulator because we will account for emulation
errors when fitting to data. The best way to measure the uncertainty in the emu-
lator predictions is to perform test simulations that span the emulated parameter
space. However, this implies that we would need to run many additional simula-
tions. To save time, we choose instead to measure the uncertainty by making use
of k-fold cross-validation, which we will refer to as cross-checks.

We create N, new data sets, where Ngj s is the number of nodes in our Latin
hypercube (32 in our case). For each of these data sets we take out one simulation
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and retrain the emulator on the reduced set of Ngj,s — 1 samples. We then test
how accurately the emulator is able to predict the simulation that was left out.
We do this by taking the ratio between the result from the run that was left out,
and the prediction of the emulator for the parameter values of the left-out run.
This gives us a value for each mass bin in the training data. We combine the ratios
for all mass bins and Ng;,,s emulators into a single list and compute the standard
deviation, 0crosscheck- 1he error on the emulator prediction, ey, is then given by

Oemu = |0crosscheckf(Mr\)|r (2-20>

where f(M,") is the value predicted by the emulator for mass M and at parameter
values . The result of the cross checks for the Latin hypercube of intermediate-
resolution simulations can be seen in Fig. 2.3. It is important to note that cross
checks are a conservative method to estimate the uncertainty. The input for
cross-checks is uniformly sampled, implying that a significant fraction of the test
points is located near the boundaries of the parameter space, where a Gaussian
process is naturally less accurate.
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Figure 2.3: Performance of the emulator on cross checks (see §2.4.4) for the redshift z = 0 SMF (left panel), the z = 0.1 X-
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resolution. Each of the 32 red lines corresponds to the case where a single simulation from the 32-node Latin Hypercube
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omitted simulation to the actual simulation values. The solid black line shows the median as a function of mass. The horizontal
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indicate the one-to-one lines, i.e. zero errors. The grey bands indicate the regions that are not used for fitting in Section 2.5.
In each panel we also indicate the observational errors. For the SMF we show the error due to cosmic variance and the errors
on the data by Driver et al. (2022), for the z = 0.1 gas fractions we combine the error from the X-ray data with the error due to
hydrostatic bias and for the z=0.3 gas fraction we show the error on the weak lensing data by Akino et al. (2022). The emulator
predictions are accurate enough to predict to simulation output within the observed constraints
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Table 2.6: Accuracy of the emulators, 0¢;osscheck, fOr the three different simula-
tion resolutions and the jet model AGN variation, in percentages. The values are
obtained by taking the standard deviation of the ratio between the result from
the simulation omitted from the Latin hypercube and the prediction from the
emulator trained on all but that simulation.

Calibration target | High Intermediate Low Jet
log,, SMF 2.7 2.2 1.5 1.9
faas,z=0.1 89 7.5 48 7.1
foas,z=0.3 7.9 6.7 42 6.1

From Fig. 2.3 it is clear that our emulators do not suffer from significant sys-
tematic errors for our three calibration targets, the z = 0 SMF, z = 0.1 X-ray cluster
gas fractions, and z = 0.3 weak lensing cluster gas fractions. There are no signif-
icant trends with mass, and the medians ratio is centered close to one, which
corresponds to an error of zero.

It is clear that the emulator for the SMF is more accurate than the emulators
for the gas fractions. This is a reflection of the way we constrain the input simu-
lations. In the case of the SMF, the errors on the input are Poisson errors, which
are quite small for our simulation volumes in the mass range we are interested
in. The fg, errors are based on the 16th—84th percentiles of the simulated gas
fractions in each mass bin, which can be larger than the 5 per cent accuracy that
the emulator attains.

The emulator accuracy for all resolutions can be found in Table 2.6. The emu-
lators become more accurate going to lower resolution. There are several possible
reasons for this trend. First, we used larger box sizes for the lower-resolution sim-
ulations, so the uncertainty intrinsic to the simulation is smaller at fixed mass.
Second, we used a slightly larger parameter range for high resolution than for
intermediate resolution, while for low resolution we only used two parameters,
greatly reducing the sampled space.

The obtained accuracy is sufficient, as it is higher than the observational scat-
ter/uncertainty. Any deviations between the model and the data at the level of
the emulator error would still be consistent with the observational constraints,
especially as we allow for observational biases in our analysis.

2.5 Using the emulator for parameter estimation

To use the emulator as the model that we compare with observational data, we
need a way to optimise the subgrid parameters 6 (see Section 2.2) and, optionally,
the observational bias factors log,, b., bcy, and bysp (see Section 2.3).

For parameter optimisation we use the Markov chain Monte Carlo (MCMC)



2.5. Using the emulator for parameter estimation 75

package EMcEE (Foreman-Mackey et al., 2013). We use the ensemble sampler,
which we give our posterior likelihood. For every fit we have done using MCMC,
we have varied the number of walkers and steps to ensure the resulting values
are converged. We discard the first 500 steps of each chain to avoid systematic
errors due to the burn-in phase.

To evaluate the goodness of fit of an emulator prediction to the observations,
we first define the log likelihood for a single observed mass bin. For the SMF this
is given by

In Popp (M*,obs: bcv' b.,0)=
_ [fobs (M*,obs) + loglo bCV - femu(b*M*,obsr 6)]2

> 5 , (2.21)
Oobs(Me obs) + Temu (DM, ops, 0)
Here f(M,) is the SMF,
dn
(M,)=lo (—), 2.22
F) = 10810\ Fiog, o ) 222

the subscripts indicate whether the quantity is observed (‘obs’) or emulated
('emu’), O is a vector containing the values of the varied subgrid parameters,
and o is the error on f. For 0py, this refers to the error on the emulator from
cross-checks, equation 2.20. The expression also accounts for observational bias
factors due to cosmic variance, bcy, and the conversion of direct observables into
stellar mass, b,, that were discussed in §2.3.1. For cluster gas fractions measured
from X-ray observations the log likelihood is defined as

In 7)gas (MSOOC,ObS’ bHSEJ 0)=

2
-1
[fgas,BOOc,obs (MSOOC,obs) - fgas,SOOc,emu ( bHSEMSOOC,ObS’ 6)]

2 2 -1
UObS(MSOOc,obs) + O'emu(b]-[s,EZVISOOc,obsr 0)

, (2.23)

where bygg is an observational bias factor due to the assumption of hydrostatic
equilibrium that was discussed in §2.3.2. For gas fractions measured from weak
lensing plus X-ray observations the log likelihood definition is identical except
that we assume the masses are unbiased, implying bysg = 1 (see e.g. Becker &
Kravtsov, 2011; Bahé et al., 2012). Note that for the likelihood of both the SMF
and the cluster gas fraction we include a variance term to account for the error
on the emulator prediction. This is added to avoid situations where we over-fit
with respect to the uncertainty from the emulator alone.

The likelihood for the observational data is a combination of the likelihoods



76 Chapter 2. Calibration using emulators

of the individual mass bins of the three data sets

In 7)likelihood(bcw b., bHSEI 6) =

Nsmr

Z In 7)SMF (M*,obs,i: bcv' b., 6)+
i

Nsmr

1l 1 NHsg
2 | Npsg £ In Pyas, X-ray(M500¢,0bs,j» bHsE, €)+

Nwr

1
Nwir ; In Pgas,wi(Ms00c,0bs,: 0) |, (2.24)

where Ngyp, Nysg and Ny are the number of (re-binned) observational data
points (i.e. mass bins) for the SMF, the X-ray cluster gas fraction and the weak
lensing cluster gas fraction, respectively. The values of N depend on the fitted
mass ranges (Table 2.3) and vary with resolution. We normalise each likelihood
by the number of data points to ensure each separate likelihood is not directly
dependent on the number of bins used. Furthermore, we average the likelihoods
from the two types of cluster gas fraction data to ensure that the cluster gas frac-
tion and SMF data carry equal weight. In an unweighted fit, the SMF would drive
the results, because it is much better constrained. As the baryon fractions are the
main driver of the baryonic suppression of the matter power spectrum (see e.g.
Van Daalen et al., 2011, 2020; Debackere et al., 2020; Schneider et al., 2020; Sal-
cido et al., 2023), we choose to give the gas fractions equal weight in our analysis.

We then combine the different likelihoods into a single posterior,

log 7Dposterior = log Plikelihood + log Ppriori (2.25)

where the total prior is

log 7)prior =10g Poias (D.) + 108 Pojas (bev) + 108 Pojas (brsk)
+ logpsubgrid(e)x (2.26)

Poias are our priors for the observational bias factors, and Pyypgrid is our combined
prior for the subgrid parameters in 6 that we wish to calibrate. For the subgrid
parameters, we use flat priors that do not extend beyond the ranges used for the
Latin hypercube (see Table 2.2) in order to avoid extrapolations. The priors on
the bias factors were discussed in Section 2.3.

We also calculate the reduced x?2 for some of our models. We define the re-
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duced x? as

Nsmr

Xy = Z 108 Ponte (M, ops, i bews ber 0) +
i

NHsg
Z lOg PgaS,X—ray(M5OOC,obs,j’ bHSE: 0)+
j

Nwr

Z 10g Pyas,wL(Ms500¢,0bs,k» 0) | /(Nsmr + Nusg + Nwp — Ng),  (2.27)
x

where Ny is the number of sub-grid and bias parameters used for the fit.

2.6 Results

In this section we will describe the main results from our calibration approach.
We use the emulators to perform parameter sweeps in §2.6.1, then we discuss
the fitting results, first at intermediate resolution in §2.6.2 and then at the other
resolutions in §2.6.3, and finally we discuss how we use the emulator to set up
two AGN feedback variations in §2.6.4.

2.6.1 Parameter sweeps

Emulators can be used to investigate the effect of individual parameters via pa-
rameter sweeps, where the emulator predicts the effect of varying a single pa-
rameter over the range used for the Latin hypercube, while keeping all other
parameters fixed to their best-fitting values. Parameter sweeps can give valuable
insight into the importance of particular physical processes and prevent calibra-
tion through emulation from becoming a black box. The result of the subgrid
parameter sweeps for our intermediate resolution runs are shown in Fig. 2.4.
Looking at the response of the calibration targets, it is clear that the different
parameters have distinct effects, indicating that the fits will not have any strong
degeneracies between the varied subgrid parameters.

Increasing the slope of the black hole accretion rate boost factor suppresses
the high-mass end of the SMF, but has almost no effect on the low-mass end
and the cluster gas fractions. Increasing the AGN temperature jump leads to a
mild reduction of the high-mass SMF, but a strong decrease of the cluster gas
fractions. The effects of increasing the stellar feedback energy and kick velocity
are more similar. In both cases the stellar masses are decreased, leading to a
mass-dependent stretching of the SMF towards lower masses. Depending on the
galaxy mass, the SMF can either increase or decrease, though the effect is small
for the high-mass end. Cluster gas fractions decrease when either of the stellar
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Figure 2.4: Subgrid parameter sweeps using the emulator trained on our 32-
node Latin hypercube of (200 Mpc)® intermediate-resolution simulations. The
parameter sweeps are centred on the best-fitting parameters (see §2.6.2). The left
and right columns show the galaxy stellar mass function and cluster gas fractions,
respectively. In each row a single subgrid parameter is varied across the allowed
range. From top to bottom we vary the slope of the black hole accretion rate boost
factor slope, the AGN heating temperature, the stellar feedback energy, and the
stellar feedback kick velocity. The grey regions indicate the mass ranges that are
excluded for fitting (see also Table 2.3). Parameter sweeps help gain insight into
how changes in subgrid model parameters map onto observables.
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Table 2.7: Results from the fitting for the observational bias factors. The second
column shows the median and 16th and 84th percentiles, the third column lists
the maximum likelihood value which we denote as the best-fitting.

Bias Median+CL | best-fitting
Stellar mass log;, b, 0.06f81H 0.026
Cosmic variance bcy 0.98+0:06 0.995
Hydrostatic equilibrium bygg | 0.747339 0.743

feedback parameters increases, presumably because the stronger stellar feedback
suppresses black hole growth and hence AGN feedback (Bower et al., 2017).

2.6.2 The best-fitting intermediate-resolution model

The best-fitting (i.e. maximum likelihood) values of the subgrid and observa-
tional bias parameters can be found in Tables 2.2 and 2.7, respectively. These
tables also list the medians and 16 —84 per cent confidence levels of the posterior
distributions.

The posteriors for the subgrid and bias parameters resulting from fitting
the emulator predictions for intermediate-resolution simulations to the data are
shown in Fig. 2.5. The first thing to note is that the maximum likelihood model
(solid, red circle) lies comfortably within the 68 per cent confidence intervals
(inner contour) for each parameter and that it does not lie close to an edge of the
parameter space. The chosen parameter ranges, i.e. the imposed priors, are thus
sufficiently large for the models to bracket the target data and they do not drive
the results.

It is also clear that there are no strong degeneracies between any of the sub-
grid parameters or between any of the bias parameters. The absence of strongly
degenerate subgrid parameters is partially by construction, because we chose to
fix some of the parameters that would otherwise have caused the results to be-
come degenerate (e.g. Hpear and ATpgn, see §2.2.3). There is, however, significant
degeneracy between the slope of the density dependence of the black hole ac-
cretion boost factor (fgy) and the stellar mass bias (b,). These two parameters
are anti-correlated. Increasing the bias shifts the observed SMF towards higher
masses, which means the black hole boost factor needs to decrease to allow more
stars to form in high-mass galaxies, whose growth is controlled by AGN feedback.

The best-fitting values for the galaxy mass and cosmic variance biases are
log,, b. = 0.026 and bcy = 0.995, respectively. The fitted hydrostatic bias, bygg =
0.743, enables the model cluster gas fractions to agree simultaneously with the
Akino et al. (2022) weak lensing data and the compilation of X-ray data. For all
the bias values we find posteriors that are in agreement with the priors, so we
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Figure 2.5: The posterior distributions of the model parameters resulting
from fitting the emulator to the observed SMF and cluster gas fractions for
intermediate-resolution simulations. The parameters shown are the stellar feed-
back energy, fsy, the stellar feedback kick velocity, Avgy, the AGN feedback tem-
perature jump, ATagN, the logarithmic slope of the density dependence of the
black hole accretion rate boost factor, fpy, the stellar mass bias, by, the hy-
drostatic mass bias, bysg, and the cosmic variance bias, bcy. The four subgrid
parameters are described in Section 2.2 and the three observational bias factors
are discussed in Section 2.3. The black contours show the 68 and 95 per cent
confidence levels. The panels along the diagonal show the one dimensional prob-
ability density for each parameter. In these plots the three vertical lines indicate
the 16th, 50th and 84th percentiles. The solid, red circles indicate the maximum
likelihood values, which were used for the fiducial model. Each panel is centered
on the centers of the priors given in Table 2.2. The posteriors show that we can
find a single solution that fits the simulations to the observational data.
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conclude that our fitting does not put any significant additional constraints on
the bias parameters.

The best-fitting emulator predictions for intermediate resolution are com-
pared with the data in the middle row of Fig. 2.6, which also shows the result
of a (200 Mpc)? simulation run with the best-fitting subgrid parameter values
(i.e. our fiducial model). The left and right panels show the SMF and cluster gas
fractions, respectively. The gas fractions are shown for both the redshift of the
X-ray data, z = 0.1 (light blue line and dark blue data points), and the redshift of
the weak lensing data, z = 0.3 (purple line and dark purple data points). Grey re-
gions and dotted line styles indicate mass ranges that were excluded from the fit.
The ranges can be found in Table 2.3. Note that the fitted bias factors have been
used to shift the data. We obtain good agreement with the fitted observations
with a reduced x2 = 1.23 for the combined fit to the SMF and the cluster gas frac-
tions. The good agreement between the blue and the red lines demonstrates that
the emulator was able to predict accurately what the fiducial simulation would
look like in the fitted mass range.

Remarkably, the simulations fit the SMF down to galaxy masses correspond-
ing to slightly fewer than ten stellar particles. Comparing the predicted gas frac-
tions at z = 0.1 and 0.3, we see 