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In herinnering aan mijn vader George,
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“Why do you go away? So that you can come back.
So that you can see the place you came from with new eyes and extra colors.

And the people there see you differently, too.
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– Terry Pratchett, A Hat Full of Sky
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1
Introduction

In his dialogue Parmenides (129B), Plato lets his master Socrates state:

"... nor, again, if a person were to show that all is one by partaking of one, and at the
same time many by partaking of many, would that be very astonishing. But if he were to show
me that the absolute one was many, or the absolute many one, I should be truly amazed."

In Plato’s Theory of Forms, it is argued that our empirical, sensible observations can
only be of the many possible different reflections of an insensible, unique universal Form, an
absolute and unchanging concept, outside the limits of our physical space-time.

If any branch of the natural sciences is restricted, in its quest for a truthful description of
reality, by the glimpses granted by the Universe, it is astronomy. Astronomers may improve
their instruments and statistical techniques, but cannot set up a controlled experiment on most
celestial objects, change their position in our Milky Way or follow the billion year evolution
of a singular object beyond ‘momentary’ observations lasting mere centuries or decades. In
Plato’s well known metaphor, we can only see the shadows on the wall of the cave and hope
to discover the true reality outside it.

Plato’s contemplations were of a metaphysical nature, and the comparison with astron-
omy would end here, but it should be noted that it is no coincidence that astronomy was part
of the quadrivium, four arts (the other three being arithmetic, geometry, and music) required
for admittance to his Akademia.

This thesis modestly attempts to combine scientific research, by which we mean the afore-
mentioned description of our universe, with theoretical considerations of the statistical meth-
ods used for that research, or how we can derive that description from the reflections that we
see. In this work, we focus on the matter distribution in groups and clusters of galaxies, and
consider the intricacies of the method of weak gravitational lensing that we use, respectively.

This introduction starts with a conceptual overview in section 1.1, after which we give a
more mathematical and technical summary of these subjects in section 1.2. Section 1.3 then
gives a short outline of the scientific chapters.

1



2 Chapter 1: Introduction

1.1 Now you see me...

Astronomy is one of the oldest natural sciences. The mysteries of the night sky have captured
the imaginations of ancient civilizations since prehistoric times1.

One of the oldest stories of observations and interpretations is that of the Pleiades, “Seven
Sisters” in Greek mythology, an open star cluster designated as M45, which may have in-
spired humans for 100,000 years (Norris & Norris 2021). The cluster consists of more than
1000 confirmed members, of which formally2 ten can be seen by the naked eye (Kyselka
1993, Norris & Norris 2021), but in practice, only six3 are visible to most people with good
visual acuity in a dark night. Examples are Galileo’s depiction of the Pleiades in his Sidereus
Nuncius (1610), where he indicates six visible stars among 36 observable through his tele-
scope, and the Greek Aratus of Soli in the third century BC, who reported that “only six
[sisters] are visible to the eyes” (Krupp 1991). In Greek mythology, this is explained by one
of the sisters (Merope) hiding from their pursuer Orion, the hunter. It is very likely that the
cluster was observed and named, before the story was associated with it (Hard 2004), so why
tell a story about seven sisters, when only six are seen?

Might this be an example of confirmation bias, that is, an observer interpreting what is
seen in a way that ‘fits the story’ best, thereby confirming preexisting theories or beliefs? Is
this mythological story adjusted, so it could fit the observations? This explanation is contra-
dicted by the strong similarity, suggesting a common origin, of stories on a “lost sister” or
“daughter”4 among many cultures around the globe, even those that had not been in contact
for 100,000 years (e.g. Aboriginal Australian cultures predating European contact, Burnham
1978, Gibson 2017).

An alternative hypothesis is posed by Norris & Norris (2021), who calculate from data
of the Hipparcos satellite (Van Leeuwen 2009) that, because of the proper motion of Pleione,
that star was 100,000 years in the past 8.4 arcminutes away from the much brighter Atlas,
an angular distance that is more than a quarter or a full moon. Nowadays, the two are so
close, that the glare from Atlas prevents Pleione from being seen by the naked eye under
most circumstances.

If this hypothesis is true, then there is no mystery to the story of a “lost sister”. That
‘mystery’ is supposed by us, because the cultural stories surrounding M45 do not match our
observations, but they matched observations at the time the root story might have originated
in Africa. This would mean that such an observer’s bias would be ours.

1.1.1 Observations and bias

This thesis focuses on systematic effects, statistics and subsequent interpretation. In the
context of the latter, we have already used the terms confirmation bias, a predisposition to
prior beliefs, and observer’s bias, an indication of limitations in the available information or
perspective, and therefore categorized under information bias. In our interpretation of the
general term, a bias is a discrepancy between an observation or interpretation, and the ‘truth’.

1At least, that is our current interpretation of some artifacts, sites and their orientations.
2Using a criterion of an apparent ‘visual magnitude’ brighter than six (mV < 6).
3In fact, the Greek interpretation includes Atlas, the father of the sisters, among those six, reducing the number

of visible sisters to five in that cultural version.
4Or occasionally indeed two.
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Every student has heard of the Copernican Revolution, the changing of our view of the
universe from geocentric, revolving around Earth, to heliocentric, revolving around the Sun.
The Ptolemaic geocentric model, in basis a set of circles with the Earth as center, upon which
moved the Sun and planets, had known problems in its description of reality. Some of these,
the observed change of speed and retrograde motions of objects such as planets, where the
direction of motion on the sky seems to reverse, could not be explained without adding ad-
justments that compromised the philosophical elegance of the basic system. See Figure 1.1.

One such an adjustment was the addition of epicycles, little circles that themselves moved
over the larger, basis circles. Another was the introduction of equants, extra points beside
Earth, around which objects moved at constant angular speed, while moving around other
points, the deferents, with constant distance (i.e. circles).

Figure 1.1: Representation of a planetary motion in the Ptolemaic geocentric model. The planet moves
in a small epicycle. The center of that epicycle, shown as a small dot · , moves in turn in a circle around
the deferent, shown as ×, and with constant angular speed around the equant, shown as a bullet • . This
image has been acquired in the public domain.

Copernicus presented the heliocentric model in 1543 as a mathematically much more
elegant model and a better description of reality, explaining for instance retrograde motion
as a natural consequence of the Earth’s motion. However, an empirical model needs not only
describe observations, but also predict them, and a major source of criticism for Copernicus’s
model was the need of many more epicycles to match new observations. The reason for this
was the continued use of circles as a basis model. It was not until Kepler’s laws of planetary
motions in 1609, that circular orbits where replaced by elliptical ones, removing the need for
epicycles and equants altogether.

As such, Copernicus’s original heliocentric model is one of the most famous examples of
model bias, a discrepancy that arises because the model is intrinsically not suited to describe
the situation. Model bias is a recurring point of interest throughout this work. In chapter 2,
we assess the assumption that we can model groups of galaxies that lie close to each other
as separate objects, ignoring the influence they have on each other. In chapters 2, 3, and 5,
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we discuss how we can model the center of groups of galaxies, as mis-centering can have a
severe impact on our results.

In astronomy, one of the best known biases is the Malmquist bias, the fact that intrinsically
brighter objects are easier to detect and therefore can be seen to a greater distance (Malmquist
1925). Looking back through our Universe, greater distance also means earlier times, so the
Malmquist bias can create a false impression of evolution. If one doesn’t account for this
effect, the sample is said to suffer from selection bias. We consider a variant of this effect in
chapter 2, where we estimate how many observed sources in the background of a supergroup
of galaxies might actually be faint, instead of far away, and belong to the structure, throwing
off our calculations.

In chapter 4 and 5, we discuss statistical bias, where it is not limitations in information or
physical models that causes a biased result, but our interpretation of calculations. A statistic
is nothing more than the result of an algorithm, usually a calculation, performed on a sample
of values. The arithmetic mean is the best known example. We then interpret the meaning of
this result. This a form of descriptive statistics, that aims to describe features of a population
or a sample of that population, such as an ‘average value’ that best represents the sample.

As a well known example, when discussing salaries of the ‘average’ working citizen in
a country, we have to take into account that there is a strict minimum wage (even if that
minimum is zero), but not a maximum, with executives of large concerns or soccer players
earning millions or even tens of millions. When the average income of a country is discussed,
the median income is much more descriptive of the population and the mean can give a
seriously biased interpretation of the people’s prosperity.

The calculations performed are correct in themselves. The results just don’t give an ac-
curate description of reality. In chapters 4 and 5, we compare several descriptive statistics,
or estimators, on samples of galaxy ellipticities. While these methods are all mathemati-
cally correct, they may not be equally appropriate to be used in a description of the matter
distribution.

1.1.2 Dark matter
Astronomy studies many objects that cannot be observed directly, not even with a telescope,
or not yet. The dark patches one sees when looking at the band of the Milky Way at night,
known as The Great Rift, used to be thought of as emptiness, until observations (Barnard
1906) proved that they were actually obscuring dust clouds, that can nowadays be observed
directly in infrared. In contrast, black holes, by their nature, can never be observed directly5,
only indirectly by energetic phenomena just outside their event horizon.

Before this century, planets outside our solar system were too small to be observed di-
rectly, until the observation of Fomalhaut b (Kalas et al. 2008) by the Hubble Space Telescope
(HST). Before that, their existence could be deduced indirectly, e.g. from the regular dim-
ming of the star they orbit when they pass in front of it, or the ‘wobble’ in the star’s motion
from their gravitational interaction. This requires the exoplanet to be sufficiently large or
massive and our view of its orbit to be more or less from the side. This biased early samples
of exoplanet candidates to massive planets, orbiting their star very closely.

In the same manner, one of the biggest mysteries in the universe to date (and a major
subject of this thesis) was discovered: dark matter. The first indication of unseen matter came

5Which is why they are often called black hole candidates, as their nature cannot be confirmed by direct imaging.
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from observations of stellar motions in our own Milky Way, from which Lord Kelvin deduced
in 1884 that there must be many more stars than could be seen, so that “many of our supposed
thousand million stars, perhaps a great majority of them, may be dark bodies” (Kelvin 1904).
Kapteyn (1922) first coined the term “dark matter” to explain the distribution of stars and
velocities, as seen from the solar neighborhood. Although it is sometimes mentioned that
the work of Oort (1932) confirmed the hypothesis of Kapteyn, it was shown that these and
similar works suffered from one or both of selection or model bias and that these works did
not prove the need for dark matter (Kuijken & Gilmore 1989), but the concept was born.

Arguably the first real evidence for dark matter came from the work of Zwicky (1933),
who studied the orbital motions of galaxies in the Coma cluster. Zwicky concluded from their
large velocities that the visible mass, the known matter of stars, gas and dust, also known as
baryonic matter, was not enough by a factor of more than 400 to keep them in place, instead
of flying off. (Schwarzschild 1954) also found the mass-luminosity ration of the Coma cluster
to be “bewilderingly high”.

Freeman (1970) and Bosma (1981) found a similar effect when studying the rotation
curves of spiral galaxies. If there was no mass beyond the disk, one would expect the rota-
tional velocity to fall off the further one observed from the central mass distribution. How-
ever, the observed rotation curves remained flat far beyond the visible disks. Rubin (1983)
made the connection to Zwicky’s dark matter and discussed the implications for the geometry
of the universe.

So far, the arguments for the existence of this unknown dark matter came from dynamical
considerations. A next fundamental discovery came from observations of the Cosmic Mi-
crowave Background (CMB), first observed by Penzias & Wilson (1965) and mapped by the
COBE satellite (Mather 1982). The CMB can be thought of as an afterglow of the Big Bang,
created when the hot ionized plasma in the universe cooled down sufficiently to recombine
into the matter we see today. From observations by the WMAP satellite, Spergel et al. (2003)
and Hinshaw et al. (2007) showed that of the total matter in the universe, less than 20% was
in the forms of baryons, and the rest was dark matter.

In fact baryonic and dark matter together only provide ∼ 30% of the matter-energy content
of the universe, while ∼ 70% of the content of the universe is energy6. In this thesis, we use
cosmological values consistent with results from the Planck satellite (Planck Collaboration
et al. 2014), with 4.9% ordinary matter, 26.6% dark matter and 68.5% energy. So far, the
nature of and observations of dark matter elude us, as elementary particle physics have no
conclusive theoretical explanation and our instruments have not yet been able to detect it. We
know it’s there and we know it interacts through gravity, but so far there doesn’t seem to be
any interaction with electromagnetic radiation or baryonic matter.

The curvature of space-time

As dark matter can only be observed indirectly by its gravitational interactions, it follows that
we rely on indirect methods to study the total distribution of all matter. Our method to study
this distribution makes use of gravitational lensing, an effect of the curvature of spacetime,
most accurately7 predicted by Einstein’s theory of general relativity (e.g. Eddington 1920,

6In fact, the nature of this energy is also ‘dark’, i.e. unknown and unobserved, possibly in the form of a cosmo-
logical constant Λ, a term first used by Einstein (1917)

7Classical theory, already by Newton in 1704, also predicts the bending of light rays, but is off by 50%.
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Figure 1.2: The curvature of spacetime causes the light rays from a source in the background (blue) to
deflect from a straight line. An observer perceives an image (red) displaced from the position of the
source.

Chwolson 1924).
In the general relativistic description, the geometry of spacetime is determined by the

presence and state of energy and matter. More simply put, spacetime is bent due to a concen-
tration of mass, an effect that we experience as gravity. Because light rays travel along the
shortest path available, this path is no longer straight in a curved geometry (see Fig. 1.2). This
makes gravitational lensing a direct probe of the geometry of the universe and the distribu-
tion of all matter, without the need to make assumptions about the astrophysical or dynamical
state of observed phenomena.

The first observations of gravitational lensing were made by Dyson et al. (1920), during
the solar eclipse on the 29th of May, 1919. Around this time, it was discovered that our Milky
Way was just one of hundreds of billions (Lauer et al. 2021) of galaxies, that form the building
blocks of the universe (Slipher 1915, Curtis 1917). Zwicky (1937) suggested that galaxies
would be massive enough8 lenses to make this effect easier to observe, and numerous enough
to be likely candidates to be lensed. Measurement of this variant, aptly called galaxy-galaxy
lensing, was first attempted by Tyson et al. (1984) and finally detected by Brainerd et al.
(1996).

This thesis focuses on lensing by more massive structures, like groups and clusters of
galaxies, first detected by Tyson et al. (1990). Perhaps one of the most powerful examples of
gravitational lensing as a way to probe the matter distribution independent of astrophysical
assumptions is given by the bullet cluster (Clowe et al. 2006, see Fig. 1.3).

The bullet cluster system actually consists of two clusters of galaxies that have passed
through each other, the smaller cluster moving at higher velocity to the right being considered
the ‘bullet’. The groups of galaxies of these clusters can pass collisionlessly through each
other and appear unaffected, but the intracluster gas, where most of the known, baryonic
mass in these clusters resides (Clowe et al. 2006), lags behind. Their reconstruction of the

8Typical luminosities of bright galaxies like our own Milky Way are 100 billion times the luminosity of the Sun,
L? ∼ 1011L�.
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Figure 1.3: Left. A reconstruction of the matter distribution (green contours) using gravitational lensing
compared to the X-ray emission of the hot gas (color scale), where most of the visible, baryonic matter
of this system resides. Right. The same reconstruction, now compared to the location of the galaxies
that make up the two subclusters. These images show that most of the total matter does not reside where
most of the baryonic matter is observed, a clear indication that the major part is ‘dark’ and collisionless.
Originally published in Clowe et al. (2006).

matter distribution using weak gravitational lensing clearly show that most of the total matter
does not reside where most of the baryonic matter is observed, a clear indication that the
major part is ‘dark’.

1.2 Weak gravitational lensing
In this section, we introduce the mathematical framework of gravitational lensing, as well as
the principles of weak lensing we have used in our work. We also present the central concepts
to our statistical approach and our tests for systematic effects. We introduce terminology and
notation conventions used in this thesis.

1.2.1 The basics of gravitational lensing
We start with an analytic derivation of the framework of weak lensing, the main observables
and concepts that then form the basis for the research in this thesis. We refer the reader to
excellent reviews such as Bartelmann & Schneider (2001), Schneider (2006), Hoekstra &
Jain (2008), Bartelmann & Maturi (2017), for more in-depth approaches.

As the lensing effect is caused by rays of light being deflected by the curvature of space-
time due to mass inhomogeneities along their path, we consider how a mass overdensity acts
on the light rays from distant sources behind it. Figure 1.4 shows a simple representation of
a gravitational lens system.

For the purposes of this work, the extent of the lensing mass along the line of sight,
compared to the distances from observer to lens and from lens to background source, is
negligible. In this so-called thin-lens approximation, we can describe the path of light by
straight line segments. In this representation, we use angular-diameter distances Dl from
observer to lens, Dls from lens to background source9, and Ds from observer to background

9More accurately, the distance to the source plane perpendicular to the line of sight from observer to lens, but in
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Figure 1.4: Representation of a gravitational lens system, showing the displacement of a source at
position S (x, y) to an image at position I(x′, y′), where we take the origin of the source plane collinear
with the positions of the lens L and the observer O. Based on Smit et al. (2021).

source.
The deflection angle ~̂α is determined by the gradient of the gravitational potential Φ per-

pendicular to the path of light, integrated along that path:

~̂α = −
2
c2

1
Dl

∫
~∇θ Φ dl , (1.1)

where ~∇θ is the two-dimensional gradient in angular coordinates perpendicular to the line of
sight and the angular-diameter distance factor of D−1

l arises from the conversion of physical
to angular coordinates in the case of small angles.

This leads to an angular displacement, as seen from the observer and again using the
small-angle approximation (see Fig. 1.4)

~α = −
Dls

Ds
~̂α , (1.2)

this approximation, these are the same.
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also called the reduced deflection angle, relating the observed position ~θ of a distant point
source to its unlensed position ~β by the lens equation

~β = ~θ − ~α. (1.3)

Under the thin-lens approximation, the deflection of light rays by the lensing mass is then
described by ~α = ~∇θ ψ, where

ψ =
2
c2

Dls

DlDs

∫
Φ dl (1.4)

is the two-dimensional, dimensionless, lensing potential. In this way, the deflection angle can
be related to the density of the lensing mass and to observable distortion of sources in the
background, as follows, starting with the latter.

The differential effect of the deflection of light on the images I(x, y) of background galax-
ies, which are extended sources, can to first order be described as a coordinate transformation,
by taking the derivatives in the lens equation (1.3) of the original position β with respect to
the observed position θ. Substituting ~∇θ ψ for ~α, we obtain the Jacobian of the lens mapping,(

x′

y′

)
=

(
1 − ψ11 −ψ12
−ψ21 1 − ψ22

) (
x
y

)
, (1.5)

with

ψi j =
∂2ψ

∂θi∂θ j
, (1.6)

resulting in the lensed image I(x′, y′), which is the key observable in our work.

Critical surface mass density and convergence

To interpret the effect on the source image, we note that the linear, symmetric coordinate
transformation in eq. 1.5 can be decomposed in three parts, namely the identity I and two
perturbations, consisting of an isotropic part describing a magnification, and an anisotropic,
traceless part, describing a shearing of the image:

I −
1
2

(ψ11 + ψ22)I +

(
− 1

2 (ψ11 − ψ22) −ψ12

−ψ21
1
2 (ψ11 − ψ22)

)
(1.7)

To relate ψi j to the density of the lensing mass, we start with the isotropic term, which is
half the Laplacian of the lensing potential: 1

2 (ψ11 +ψ22) = 1
2∇

2
θ ψ. Using equation 1.4 and the

thin-lens approximation, introducing a factor of D2
l due to conversion between angular and

physical coordinates, we obtain

1
2
∇2
θ ψ =

1
c2

DlDls

Ds

∫
4πGρ dl , (1.8)

which is a dimensionless quantity. Defining the surface mass density as

Σ ≡

∫
ρ dl (1.9)
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and gathering the remainder of the right-hand side into

4πG
c2

DlDls

Ds
≡ Σ−1

cr , (1.10)

with Σcr called the critical surface mass density, we find that the isotropic term can be written
as

κ ≡
1
2
∇2
θ ψ =

Σ

Σcr
, (1.11)

where we recognize κ as a normalized dimensionless surface mass density. Recognizing that
∇2
θ ψ = ~∇ · ~α is the divergence of the deflection of the light rays, or the manner in which those

light rays converge due to the lensing effect, κ is simply called the convergence.

Shear and intrinsic ellipticity

The shear matrix in eq. 1.7 has two independent components γ1 = 1
2 (ψ11 − ψ22) and γ2 =

ψ12 = ψ21, with γ ≡ γ1 + iγ2 called the complex shear. Eq. 1.5 then becomes(
x′

y′

)
=

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

) (
x
y

)
. (1.12)

This transformation leads to magnification and distortion of the light distribution of back-
ground sources. Weak lensing magnification analyses (e.g. Hildebrandt et al. 2009, Van Waer-
beke et al. 2010, Hildebrandt et al. 2011) require the intrinsic (distribution of) source sizes
or magnitudes. In weak shear analyses, the focus lies on the net distortion or reduced shear
g = g1 + ig2 ≡ (γ1 + iγ2)/(1 − κ):(

x′

y′

)
= (1 − κ)

(
1 − g1 −g2
−g2 1 + g1

) (
x
y

)
, (1.13)

where the transformation is written as a multiplication of (1 − κ) and a distortion matrix
describing the alignment of lensed sources in the foreground potential.

The effect on a circular source is a shearing into an ellipse with axis ratio q = b
a , where

q =
1 − |g|
1 + |g|

⇔ |g| =
1 − q
1 + q

=
a − b
a + b

, (1.14)

and position angle ϕ via
g = |g| (cos 2ϕ + i sin 2ϕ) . (1.15)

See Fig. 1.5.
This gravitational distortion cannot be measured directly in practice. Galaxies that are

used as background sources, have an intrinsic shape distribution and we can only measure the
combined effect of their intrinsic shape and a weak lensing distortion. While galaxies often
have complex morphologies, it is adequate to describe images by their quadrupole brightness
moments or their ellipticities, and their respective response to weak shear distortions. A
common definition10 of the shape of an image with elliptical isophotes is the ellipticity ε =

10An alternative definition of ellipticity is often denoted as |χ| = 1−q2

1+q2 , related to the geometrical eccentricity, and
called polarization (e.g. Seitz & Schneider 1995, Viola et al. 2014, and section 1.2.2).
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Figure 1.5: The effect of shear on an intrinsically round source. The g1 component stretches the image
horizontally or vertically. The g2 component stretches the image diagonally.

ε1 + iε2, defined as the reduced shear needed to create this image from an image with circular
isophotes (Bernstein & Jarvis 2002, Kuijken 2006).

The complex notation gives a most straightforward formulation of the ellipticity ε that
results after transforming an image with intrinsic ellipticity ε I with a distortion g. As shown
by Seitz & Schneider (1997),

ε =
ε I + g

1 + g∗ε I for |g| ≤ 1 , (1.16)

with g∗ the complex conjugate of g.
The intrinsic shape distribution is called shape noise and assuming no preferred direction

on the sky, should average to zero:
〈
ε I

〉
= 0. Seitz & Schneider (1997) showed that, for eq.

1.16, the mean11 〈ε〉 does not depend on the intrinsic shape distribution P(ε I). Each back-
ground shape measurement ε is then an unbiased, albeit very noisy, estimate of the reduced
shear g, but only in the absence of further sources of noise, that would alter the observed
distribution of ε.

11Or, in fact, any n−th moment 〈ε〉n.
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In practice, there are always sources of error that manifest as ‘noise’ in the observed
ellipticity values, such as pixel noise of the detector, systematic distortions in the optical
system and limitations in modeling algorithms.

1.2.2 The measurement of shapes

While the basis of weak gravitational lensing is given in analytic detail, in practice one has
to deal with many systematic effects, when measuring the main observable, the shapes of
background sources. As many of these effects depend on specific telescopes, instruments,
pipelines and surveys, the most detailed and technical descriptions are given in the corre-
sponding (series of) papers.

Here we aim to give the reader, as a frame of reference for this thesis, a qualitative
overview of a selection of effects, that will be analyzed in more detail in chapters 2 and
3. For a more detailed treatise, we point the reader to the references given there and in the
following sections.

Images and distortions

At the observer’s end in the schematic of Fig. 1.4, the light rays pass through the atmo-
sphere, in case of ground-based observations, and through the telescope optics, before being
registered by the detector of the instrument. The response of this total optical ‘system’ to
the received signal is called the point spread function (PSF), its Fourier transform being the
optical transfer function. It describes the image of a point source.

The PSF causes a pattern of ellipticity distortions that varies over the field of view, and
can be modeled using the images of stars (which are unresolved and can therefore be treated
as point sources). The correction is then a deconvolution. This can be done on a single image,
if there are enough stars in the field of view to properly sample the PSF pattern.

Observations which have relatively few stars, typically at high galactic latitude, can be
corrected using dense stellar fields as reference. Hoekstra (2004) modeled the time-invariant
spatial pattern of the PSF by averaging many fields. To properly take the temporal variations
into account, a principal component analysis (PCA) can be used (e.g. Jarvis & Jain 2004,
Schrabback et al. 2007, 2010). We employ this technique in the weak lensing analysis of
imaging data taken with the Advanced Camera for Surveys (ACS) on the HST in chapter 2.

In this way, the term PSF is used as a catchall, and the resulting distortions are oftentimes
corrected for in a similar fashion: a correction for the combined PSF pattern, without the need
to identify individual causes. As pointed out by Jarvis et al. (2008), a physical model for a
known contribution to the PSF may be more accurate than an average or a PCA derived from
noisy data. In this context it is worth noting, that both Jarvis & Jain (2004) and Schrabback
et al. (2007) interpret their first principal component to indicate telescope focus.

The turbulence of the atmosphere causes a blurring of the image called seeing. If ex-
posure times are long enough, the direct effect on the ellipticity or the PSF is negligible
(Heymans et al. 2012a). It is usually the dominant factor in the size of the PSF for ground
based observations and therefore effectively sets the limit on the angular resolution of the
observations, which in turn limits the number statistics of resolved background sources that
can be used for lensing. To give some examples: the seeing of the Wide Field Imager (WFI)
data used in chapter 3 varies between 0.75′′ and 1.35′′ with a median of 1.0′′, whereas the
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median seeing conditions for the Canada-France-Hawaii Lensing Survey (CFHTLenS, Hey-
mans et al. 2012b) and the Kilo-Degree Survey (KiDS, de Jong et al. 2013) Data Release 3
(KiDS-450, de Jong et al. 2017) used in chapters 4 and 5 are 0.72′′ (Erben et al. 2013) and
0.66′′ (Hildebrandt et al. 2017), respectively.

Observations from space are not limited in resolution by seeing, but are diffraction-
limited, the fundamental physical limit due to diffraction determined by the telescope aper-
ture size and the wavelength observed. The resulting diffraction pattern makes the PSF more
complex. An important type of artifact seen in space-based observations is caused by the
deterioration of the instrument CCDs, due to constant exposure to cosmic rays, outside the
protective atmosphere. This causes a charge-transfer inefficiency (CTI), leading to trails in
the CCD readout direction. These trails will affect the measured PSF and shear patterns and
need to be corrected for, as is done in e.g. Rhodes et al. (2007), Massey et al. (2010) and in
chapter 2.

A final aspect we mention here concerns the translation from instrument (CCD) response
to image. The dominant source of noise in the image is pixel noise, mainly due to sky
background Poisson noise and CCD readout noise. This increases uncertainties in shape
measurements and causes measurement bias in the derived shapes, as the dependence of
ellipticity on pixel values is non-linear (see e.g. Refregier et al. 2012, Melchior & Viola
2012, Kacprzak et al. 2012).

Pixel noise can be compensated by increasing exposure time. As a CCD image is quan-
tized on a rectangular grid, an observed field of view is built from a set of dithered exposures.
The final image is obtained by stacking these exposures, thus obtaining a longer total expo-
sure time and a higher signal-to-noise ratio. A disadvantage of using such a stacked image,
is that the individual exposures have their own PSF patterns, which are then also stacked. Es-
pecially in areas of the final, stacked image that are not covered by all individual exposures,
due to edges or gaps in the CCD mosaic, the resulting PSF pattern may be discontinuous12.
We assess this effect in chapter 3. Shape measurement methods such as the lensfit pipeline
presented in Miller et al. (2013) model the full set of single exposures instead.

Measurement and bias

Given the necessary control of systematics, and the fact that the modeling of these systematics
and the intended source ellipticity measurements are based on noisy images, the development
of accurate and robust shape measurement methods has been and still remains a major invest-
ment in the field of weak lensing (see e.g. Mandelbaum 2018). Community-driven projects,
such as the Shear Testing Programme (STEP, Heymans et al. 2006, Massey et al. 2007), and
the GRavitational lEnsing Accuracy Testing challenges (GREAT, Bridle et al. 2010, Kitch-
ing et al. 2012, Mandelbaum et al. 2015), have led to a decrease in measurement bias and
variances and a better understanding of remaining systematic effects and biases.

In this thesis, we explore three particular methods, based on surface brightness moments
or model fitting. In chapter 2 and 3, we make use of the KSB method (Kaiser et al. 1995). In
chapter 3, we compare KSB and the Shapelets method (Refregier 2003, Refregier & Bacon
2003). In chapter 4 and 5, we make use of the shear catalogs of CFHTLenS and KiDS-450,
both derived with lensfit (Miller et al. 2007, Kitching et al. 2008).

12This problem is confounded when the single exposure times become short enough for the atmosphere to con-
tribute to the PSF ellipticity pattern.
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KSB describes images by their second order brightness moments in angular coordinates

Qi j =

∫
θiθ jW(θ)I(θ)d2θ∫

W(θ)I(θ)d2θ
(1.17)

with I the surface brightness and W is a certain weight or window function. This gives three
independent quadrupole moments, Q11, Q22, and Q12 ≡ Q21. KSB determines the complex
polarization

χ = χ1 + iχ2 =
Q11 − Q22 + 2iQ12

Q11 + Q22
. (1.18)

This polarization is related to the eccentricity and is clearly zero for a circular source. How-
ever, it differs from the definition of the ellipticity ε given in section 1.2.1, which can be
defined in terms of the second order brightness moments as

χ = χ1 + iχ2 =
Q11 − Q22 + 2iQ12

Q11 + Q22 + 2
√

Q11Q22 − Q2
12

, (1.19)

and the two definitions are related through

χ =
2ε

1 + |ε |2
(1.20)

This means that 〈χ〉 is a biased estimator of g, as it depends explicitly on the distribution of
intrinsic shapes χI (Schneider & Seitz 1995). However, in the limit of weak shear, where
κ � 1 and γ � 1, we have γ ≈ g ≈ 〈ε〉 ≈ 1

2 〈χ〉. Besides this statistical bias, one has to
consider the model13 bias from approximations in the PSF correction and noise bias due to
the non-linear combination of noisy estimates of Qi j.

In the Shapelets formalism, the light distribution of a source is expanded in the orthonor-
mal basis set of Gauss-Hermite functions. This allows for a flexible model and has the ad-
vantage that the behavior of these basis functions under simple transformations (such as an
applied shear or smearing by a PSF) is well understood. A PSF model P can then be con-
structed from the shapelet expansions of bright stars in the image. In the implementation of
Kuijken (2006), which we use in chapter 3, sources are described as intrinsically circular,
with an expansion

C ≡ c0C0 + c2C2 + c4C4 + . . . , (1.21)

with Cn circular shapelet basis functions (with n always even) and cn free parameters. This
circular model is then transformed by a distortion

D ≡ 1 + ε1S1 + ε2S2 + δ1T1 + δ2T2 , (1.22)

where Si and Ti are the first-order shear and translation operators, as given by Refregier
& Bacon (2003). The free translation δ is needed to ensure an optimal centroid fitting. (We
remind the reader that for a method using surface brightness moments, like KSB, the centroid
is derived from the first order brightness moments.) This model is then convolved by the
PSF model and the resulting model M = P · D · C is then fitted to the observed sources.

13In this form also called method bias, see Viola et al. (2014).
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This forward convolution with P is numerically more stable than deconvolving noisy source
images and allows for a propagation of pixel noise, to ensure accurate uncertainty estimates
σεi . Velander et al. (2011) showed the advantage of the shapelet flexibility, when measuring
higher order distortions in diffraction limited HST images. Besides the noise bias due to
fitting a (non-linear) model to noisy images, one has to consider model bias, as the shapelet
basis functions are chosen for their elegant transformation properties, and are not realistic
representations of galaxy shapes. This mismatch is diminished if one allows the expansion
to go to higher order, but in reality the flexibility of the shapelets becomes a weakness, as we
start fitting noise. In practice, we use a cutoff in the shapelet expansion, which in itself may
introduce another (mild) model bias.

Lensfit is a Bayesian model-fitting method, using a galaxy model consisting of Sérsic
(1963, 1968) bulge and disc components. Besides using the same or similar free parameters
like the aforementioned methods, including the ellipticity ε, galaxy size and flux, and galaxy
centroid, this pipeline also fits the ratio of bulge to disc, partly discriminating between late
and early type galaxies (Miller et al. 2013, Fenech Conti et al. 2017). The log-likelihood (or
goodness-of-fit) then has the form

logL = −
∑

i

(
yi − S

[
fBbi + (1 − fB)di

])2

2σ2
i

(1.23)

with S the galaxy flux, bi and di the bulge and disc components and fB the bulge fraction.
It uses pixel-based models of the PSF, which allows for discontinuities between CCDs in
the CCD mosaic and uses the full information of all single exposures containing the source.
The posterior likelihood is then marginalized over the parameters that are not of interest,
using assumed prior distributions, leaving a likelihood surface as function of ε1 and ε2. The
aim is to alleviate possible model bias by using an adequate set of priors for the parameters
to be marginalized over. To avoid a poorly constrained likelihood, in particular a cutoff in
the ellipticity is needed, εmax = 0.804 for CFHTLenS (Miller et al. 2013) and ε ≈ 1 for
KiDS-450 (Fenech Conti et al. 2017), which introduces a bias due to truncation that needs to
be calibrated and can lead to visible signatures that affect the most elliptical ε (e.g. Smit &
Kuijken 2018, chapter 4).

In conclusion, each pipeline has its own strengths and biases, that are addressed per indi-
vidual cause, just as is recommended by Jarvis et al. (2008) for the modeling of the PSF. The
remaining discrepancies with the ‘true’ reduced shear g, are modeled as a similar catchall,
first order approximation εest = (1 + m)εtrue + c, with εest the estimated ellipticity, c a constant
additive bias, and m a multiplicative measurement bias. c may in general be readily corrected
for, if it’s not position dependent, which is most likely the result of an undersampled PSF
(Van Uitert & Schneider 2016). Usually, m is determined using simulations and is depen-
dent on observed properties, such as source brightness and size. These correlations are weak,
making estimates of m on a source-by-source basis very noisy. The correction is then done
on a sample basis. For instance, if source weights for the measured ellipticities, based on the
estimated uncertainties by the pipeline, are wi and the estimated multiplicative biases are mi,
one generally corrects the estimated lensing signal by a factor (1 + K)−1, with K of the form

K =

∑
i wimi∑

i wi
, (1.24)

using the same sample of sources (e.g. Viola et al. 2015, Dvornik et al. 2017).
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1.2.3 The inference of weak shear

Given a catalog of robust, reliable shapes εi, the final measured distribution P (εi) is modified
from the theoretical form P (ε) (eq. 1.16), due to measurement noise, even if the individual
measurements are unbiased. At this point, it is instructive to review our definition of bias in
a statistical context. An estimate or measurement is said to be unbiased, if the estimator or
measurement algorithm is expected to yield the ‘true’ value.

The measurements or estimates can still be noisy, i.e. individual shape measurements εi

may have residual discrepancies with the true values ε (as a function of
(
ε I , g

)
, eq. 1.16).

The distribution of estimates (realizations, measurements), however, should be ‘centered’,
in some statistical sense, around that true value, for the measurement method to be called
unbiased.

Usually, this definition of center is taken to be the mean or expected value, and the esti-
mator (or measurement algorithm) is said to be mean-unbiased, if for an increasing number14

of estimations, the mean estimate converges toward the value of interest of the underlying
population. Note that we discuss here the distribution P (ε̂) of an estimator ε̂ of the ellipticity
ε, that has its own distribution P (ε).

This unavoidable alteration of the sheared ellipticity distribution P (ε) means that the
mean, the first moment 〈εi〉, is no longer an unbiased tracer of g. This can partly be un-
derstood, by considering that the unbiasedness of 〈ε〉 stems from the fact that the ellipticity
distribution before the effect of gravitational shear is irrelevant, while the effect of noise, from
whatever source other than intrinsic shape noise, is applied after the shear. Since that noise
distribution will be (roughly) centered around (0, 0), whether it be from noisy measurement
or natural fluctuations in an isotropic universe, the observed distribution will be skewed low
(see Fig. 1.6).

Figure 1.6: Left and middle: the non-linear mapping of ellipticities (with |ε ≤ 1|) by a reduced shear of
g = 0.33 + 0.11i. Right: the noncommutative geometry of ε space. In blue, the resulting ellipticity εa→b

when applying a reduced shear gb to an intrinsic ellipticity ε I
a. In red, the resulting ellipticity εb→a when

applying a reduced shear ga to an intrinsic ellipticity ε I
b. Based on Smit et al. (2015).

At the same time, given that the intrinsic galaxy ellipticity distribution is confined to∣∣∣ε I
∣∣∣ < 1 and that any g < 1 will not cause a ε ≥ 1, the ellipticity ‘space’ we consider is a

14Since we technically take the limit to infinity, the central limit theorem justifies the use of the mean as measure
of center of the estimator distribution, and for the use of the shorthand ‘unbiased’ for mean-unbiased.
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highly non-Euclidean, bound but infinite15 manifold (Bernstein & Jarvis 2002, see Fig. 1.6).
One should therefore not speak of a linear difference εb − εa between two ellipticity values
εa and εb, but the excess shearing (defined by eq. 1.16) needed to transform εa into εb. Yet
measurement pipelines such as the KSB and shapelets implementations used in chapters 2
and 3, allow for values ε � 1, and the lensfit implementation in chapters 4 and 5 effectively
truncates ellipticity space − again, even if the measurements are noisy but unbiased.

In chapters 4 and 5, we investigate the consequences for the inference of the underlying
shear signal g.

Estimators and bias

Both observations (e.g. Lambas et al. 1992, Rodríguez & Padilla 2013, Smit & Kuijken 2018)
and realistic theoretical models (see e.g. chapter 4) show that the intrinsic distribution of
galaxy ellipticities is strongly non-Gaussian, but sharply peaked. For any realistic noise dis-
tribution, the shape of P (ε) is changed, but the location of this peak is still an unbiased tracer
of the underlying shear. This is a powerful option, if we can accurately determine this loca-
tion.

We considered several estimators as alternatives to the mean, less sensitive to outliers
and/or more sensitive to a centrally peaked distribution. While the principle of the ‘right’
estimator for a distribution is an appealing one, in practice no estimator is generally unbiased,
as noise distributions vary and are dependent on instrument and shape measurement pipeline.

1.2.4 Results and interpretation
And then, when one has a catalog of unbiased ellipticity measurements and an estimator that
gives an unbiased (but still noisy) value for g, begins our interpretation of the reality we have
partly inferred from the shadows on the wall.

To relate the lensing signal to the matter distribution, we rely on accurate estimates of
e.g. the distances D involved (see Fig. 1.4) or the center of the structure of interest. But
let’s assume here for a moment, to regain some lightweightedness in this introduction, that
such other necessities are of little consequence, i.e. the uncertainties and biases caused are of
subdominant16 effect: in our interpretation, we will then inevitably compare our results to an
expectation, a preconceived model of the universe, in order to understand it. So, what are we
actually looking at?

For instance, we have considered a single lensing event by a group or cluster of galaxies,
where in practice, light rays travel to a constantly changing potential, due to the large scale
structure of the universe. This leaves a statistical imprint, called cosmic shear, first detected
by (Bacon et al. 2000, Van Waerbeke et al. 2000, Wittman et al. 2000). This field of grav-
itational lensing in itself provides a complement to cosmological parameter determinations
derived from observations of e.g. the CMB (see e.g. Kilbinger 2015, for a review). For our
study of lensing by groups or clusters of galaxies, this cosmic shear signal is an additional
form of noise, i.e. we detect the signal from the cluster and the cosmic shear together (Hoek-
stra et al. 2011). In some cases, such as the supergroup observed in Smit et al. (2015, chapter

15By infinite, we mean that we can apply any g < 1 to any ε I < 1 an infinite, discrete amount of times, and still
retain ε < 1.

16But they are most certainly not, as will be discussed in chapters 2, 3, and 5.
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2), there are even known matter overdensities in the background, that need to be taken into
consideration.

In fact, background galaxy shapes can also be coherently affected by a mechanism known
as intrinsic alignment (IA) that is not due to lensing at all. This is because background
galaxies that reside in the same potential, have their intrinsic orientations influenced in the
same way, for instance due to tidal forces or angular momentum (e.g. Crittenden et al. 2002).

This effect is then further confused by the lensing effect of such a potential on even more
distant background galaxies, introducing a (negative) correlation between the intrinsic shapes
of galaxies and the shear experienced by galaxies (e.g. Hirata & Seljak 2004).

And, coming full circle to the start of this introduction, we study the shapes of the compo-
nents of background galaxies that are visible to us, even though the vast majority of matter is
dark and could be misaligned with the visible shapes. For our work, these effects are assumed
to average out, only slightly increasing uncertainties, but we mention them here in reflection
on the bigger picture.

This thesis is therefore not a road map to climb out of the cave. It does intend to provide
a possible foothold, when contemplating that long climb.

1.3 Thesis outline

This thesis covers four studies into weak gravitational lensing, consisting of a theoretical con-
sideration of the statistics of weak shear inference, and three separate studies of weak lensing
by galaxy groups or clusters, exploring various aspects that obscure direct observations of
gravitational shear.

1.3.1 Mass distribution in an assembling super galaxy group at z = 0.37

Chapter 2 is based on Smit et al. (2015) and presents a weak gravitational lensing analysis of
supergroup SG1120−1202 (Gonzalez et al. 2005), consisting of four distinct X-ray-luminous
groups that will merge to form a cluster comparable in mass to Coma at z = 0. This super-
group was discovered in the Las Campanas Distant Cluster Survey (Gonzalez et al. 2001) and
has been studied in a series of papers (Gonzalez et al. 2005, Tran et al. 2008, 2009, Kautsch
et al. 2008, Freeland et al. 2011, Just et al. 2011, Smit et al. 2015, Monroe et al. 2017).

The member groups lie within a projected separation of 1 to 4 Mpc and within ∆v = 550
km s−1, which is comparable to distances in the bullet cluster system (Tucker et al. 1995,
Markevitch et al. 2002, Clowe et al. 2004), and as such, form a unique protocluster to study
the matter distribution in a coalescing system.

We studied the weak gravitational distortion of background galaxy images by the matter
distribution in the supergroup with high-resolution HST/ACS imaging. To robustly assess
the systematic image distortions and artifacts present in these images, we used the shape
measurement methodology for HST/ACS imaging outlined in (Schrabback et al. 2010), based
on KSB+ (Erben et al. 2001).

We compared the reconstructed projected density field with the distribution of galaxies
and hot X-ray emitting gas in the system and show that the projected mass distribution closely
follows the locations of the X-ray peaks and associated brightest group galaxies. Since the
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groups show no visible signs of interaction, our findings support the hypothesis that we ob-
serve the groups before they merge into a cluster.

We derived halo parameters for the individual density peaks, finding velocity dispersions
between 355+55

−70 and 530+45
−55 km s−1 and masses between 0.8+0.4

−0.3 × 1014 and 1.6+0.5
−0.4 × 1014 h−1

M�, consistent with independent measurements.

1.3.2 Weak lensing by very low redshift groups: analysis of systematics
and robust shape measurements

In chapter 3, we studied the weak gravitational lensing signal from 79 low redshift groups
(0.05 < z < 0.0585) from the 2dF Percolation-Inferred Galaxy Group catalog (2PIGG, Eke
et al. 2004), based on the Two-degree-Field Galaxy Redshift Survey (2dFGRS, Colless et al.
2001), and observed with the Wide Field Imager (WFI) as part of the Zürich Environmental
Survey (ZENS, Carollo et al. 2013). These groups cover two orders or magnitude in mass,
with velocity dispersion 38 . σ . 691 km s−1, inferred mass 1012 . M . 1014 h−1 M�, and
bJ luminosity 1.1 × 1010 . L . 5.9 × 1011 h−2 L�. The aims of this work were twofold.

Firstly, these groups covered a mass range that had not been studied extensively yet at
the time of this research, filling a niche in the mass spectrum. Most weak lensing studies
had been into large scales, up to those of clusters and superclusters, and into small scales, the
lensing by individual galaxies. On intermediate scales, there were results in the high mass
group regime (see e.g. Mandelbaum et al. 2006, Leauthaud et al. 2010) and Hoekstra et al.
(2001) reported the first measurements of light galaxy groups in the CNOC2.

Secondly, this research could be a suitable pathfinder for the Kilo-Degree Survey (de Jong
et al. 2013), which has an extensive overlap with the 2dFGRS and this sample. Given the low
redshift and low median mass of these groups, which translate to a weak gravitational lensing
signal, this work focused extensively on understanding possible systematics in wide-field
imaging data, shape measurements methods and the statistical effect of outliers.

And important part of the analysis of systematics was estimating the effect of stacking
of exposures on PSF correction and shape measurements, comparing the shapes of stars and
sources detected in varying number of exposures and sources detected on multiple parts of
the CCD array, due to being present in overlapping fields of view.

To asses the robustness of shape measurements, we compared two different pipelines,
namely KSB+ (Erben et al. 2001), based on surface brightness moments, and shapelets (Kui-
jken 2006), considered a model fitting method. The results were statistically consistent.

We analyzed the effect of outliers in shape measurements of the inference of the weak
shear signal, by comparing the commonly used weighted mean of a sample of ellipticities to
the estimated obtained by convex hull peeling (CHP). The results were comparable in this
respect as well.

Finally, we derived estimates for the velocity dispersion by fitting the lens profile for a
singular isothermal sphere (SIS), and estimates for the mass and concentration of the groups,
by fitting a Navarro, Frenk & White profile (NFW, Navarro et al. 1996), in good agreement
with the dynamical estimates from 2PIGG.

1.3.3 Optimal statistics for weak shear analyses
Chapter 4 is based on Smit & Kuijken (2018), the first of a set of papers (with chapter



20 Chapter 1: Introduction

5 describing the second), and continues the analysis of optimal methods for inferring the
gravitational shear from a sample of measured ellipticities of background galaxies.

This way of determining the shear signal is fundamentally limited by the intrinsic dis-
tribution of shapes that galaxies exhibit. It is well known that the distribution of galaxy
ellipticities is non-Gaussian (e.g. Lambas et al. 1992, Rodríguez & Padilla 2013), and tradi-
tional estimation methods, explicitly or implicitly assuming Gaussianity, lead to noise biases
(e.g. Kacprzak et al. 2012, Melchior & Viola 2012), possibly of the order of a few percent.
This makes them comparable or even dominant to other sources of uncertainty in the pro-
cess, such as biases in shape measurement, uncertainty in the lensing geometry introduced
by photometric redshift probability distributions, or selection biases.

An optimal estimator is, from a principled point of view, more objective and better suited
than corrections to an approach that is known to mismatch the sample distribution. In this
work, we refine our method of CHP and complement that method and the canonical weighted
mean (or weighted least squares or L2 estimator) by the least absolute deviations (LAD or L1)
estimator and the biweight estimator (Beaton & Tukey 1974). We also allowed for a range
of possible ellipticity distributions, comparing a Gaussian distribution with a flat axis ratio
distribution, an ellipticity distribution from projected ellipsoids and the ellipticity distribution
in the CFHTLenS shear catalog(Heymans et al. 2012b).

We analyzed the biases, relative efficiencies and robustness of these estimators. We con-
clude that the LAD estimator is the most robust when applied to our simulations, reducing
noise bias by more than ∼ 30%, while increasing efficiency by a factor of 5 in the ideal case,
and a factor of 1.2 when applied to CFHTLenS data.

We applied these methods to fitting of Fourier modes to the pattern of ellipticities in a
simulated image, as a proof of concept.

1.3.4 AMICO galaxy clusters in KiDS-DR3: the impact of estimator
statistics on the luminosity-mass scaling relation

In chapter 5, based on Smit et al. (2021), we apply the findings of the analysis described
in chapter 4 on data from the third KiDS data release (KiDS-450, de Jong et al. 2017). We
use the shape measurements of background sources around 6925 clusters found in KiDS-
450 using the Adaptive Matched Identifier of Clustered Objects (AMICO, Bellagamba et al.
2011, Radovich et al. 2017, Bellagamba et al. 2018) and compare the results obtained with
the weighted LAD and mean estimators.

The high signal-to-noise ratio of the shear signal allows us to study the scaling relation
between the r-band cluster luminosity L200, and the derived lensing mass M200. We show the
results of the scaling relations derived in 13 bins in L200, with a tightly constrained power law
slope of ∼ 1.24 ± 0.08.

We observe a small, but significant relative bias of a few percent in the results of the
two regression methods, which is in excellent agreement with our findings in chapter 4. The
efficiency of LAD is at least that of the weighted mean, relatively increasing with higher
signal-to-noise shape measurements, a further confirmation of our previous results. As such,
LAD regression provides a robust consistency check for shear inference, which has been and
still remains a major investment in the field of weak lensing, while increased computation
times remain feasible.
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Mass distribution in an assembling

super galaxy group at z = 0.37

We present a weak gravitational lensing analysis of supergroup SG1120−1202, consisting of
four distinct X-ray-luminous groups that will merge to form a cluster comparable in mass to
Coma at z = 0. These groups lie within a projected separation of 1 to 4 Mpc and within ∆v =

550 km s−1 and form a unique protocluster to study the matter distribution in a coalescing
system.

Using high-resolution HST/ACS imaging, combined with an extensive spectroscopic and
imaging data set, we studied the weak gravitational distortion of background galaxy images
by the matter distribution in the supergroup. We compared the reconstructed projected density
field with the distribution of galaxies and hot X-ray emitting gas in the system and derived
halo parameters for the individual density peaks.

We show that the projected mass distribution closely follows the locations of the X-ray
peaks and associated brightest group galaxies. One of the groups that lies at slightly lower
redshift (z ≈ 0.35) than the other three groups (z ≈ 0.37) is X-ray luminous, but is barely
detected in the gravitational lensing signal. The other three groups show a significant de-
tection (up to 5σ in mass), with velocity dispersions between 355+55

−70 and 530+45
−55 km s−1 and

masses between 0.8+0.4
−0.3×1014 and 1.6+0.5

−0.4×1014h−1M�, consistent with independent measure-
ments. These groups are associated with peaks in the galaxy and gas density in a relatively
straightforward manner. Since the groups show no visible signs of interaction, this supports
the hypothesis that we observe the groups before they merge into a cluster.

M. Smit, T. Schrabback, M. Velander, K. Kuijken, A. H. Gonzalez, J. Moustakas, and
K.-V. H. Tran

Astronomy & Astrophysics, Volume 582, A82 (2015)
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2.1 Introduction

In the framework of hierarchical structure formation (Peebles 1970), matter overdensities
grow through merging and accretion from the scales of galaxies up to those of large-scale
structure (LSS). In the concordance ΛCDM cosmology, the large-scale structure of the Uni-
verse is driven by the density fluctuations of dark matter, which provide the initial framework
for subsequent structure formation. As such, the mass distribution in the Universe is the driv-
ing force behind the formation of clustering sites for astrophysical processes, such as galaxy
groups and clusters.

In galaxy formation and evolution, environment plays a role of major importance. Most
galaxies are found in groups and clusters (e.g., Eke et al. 2004), and observations indicate
that the main part of galaxy evolution takes place in the group environment, with significant
post-processing occurring in clusters (Tran et al. 2008, 2009, hereafter T08 and T09). A
detailed understanding of the total mass (dark and visible) and the structure of the mass
density distribution is therefore necessary to understand both the processes of group and
cluster formation and fundamental scaling relations (e.g., Leauthaud et al. 2010, Hoekstra
et al. 2012, Von der Linden et al. 2014) as well as to distinguish the latter from intrinsic
variances in astrophysical processes.

Most overdensities are detected using visible, that is, baryonic means. Common methods
use galaxies (red sequence and spectroscopic association, e.g., Eke et al. 2004, Gladders &
Yee 2005) or gas (X-ray emission or the SZ effect, e.g., Sunyaev & Zeldovich 1970, 1972,
Finoguenov et al. 2007). While these methods are efficient, they might not always be as ef-
fective: they rely on the presence of baryonic matter, while the matter distribution is driven
by dark matter. Furthermore, the subsequent classification relies on observing the results of
complex (astrophysical) processes, which introduces a significant intrinsic scatter in prop-
erties such as X-ray temperatures, star formation rate, and galaxy morphologies in different
structures of comparable mass.

Gravitational lensing is the only direct probe of the total mass distribution, in the sense
that it does not rely on astrophysical assumptions. A lower signal-to-noise ratio (S/N) makes
it a less efficient detection method except for massive structures, but in combination with
complementary methods, it is a powerful independent tool. From a statistical perspective, as
an independent, direct measurement, it can serve as a calibrator for mass-observable scaling
relations (e.g., Leauthaud et al. 2010, Hoekstra et al. 2012, Von der Linden et al. 2014). In
individual systems it provides an independent estimation of the (projected) density field and
can shed light on aspects such as interaction, dynamical state, and offsets between the overall
matter distribution and the baryonic matter.

Direct reconstructions of the density fields of individual systems do not have a high res-
olution and are predicted to show significant noise fluctuations (Van Waerbeke 2000). How-
ever, it gives an important qualitative indication of the dominant density distribution, inde-
pendent of the presence of baryons. To determine the parameters of the matter distribution,
either in a statistical survey or for individual systems, robust centroiding is an important task.
Using other tracers of the center of mass, such as X-ray detections, brightest cluster/group
galaxies (BCG/BGG), or the luminosity-weighted mean (LWM) position, gravitational lens-
ing can significantly constrain halo masses and concentrations (e.g., George et al. 2012).

Galaxy clusters and, in the past decade, galaxy groups, are now identified in a robust man-
ner, including examples of accretion of smaller structures onto existing clusters. However,
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we have less observational evidence of the connection between structures on various scales,
that is to say, the initial assembly of clusters from groups and galaxies. In this study, we
perform a weak lensing analysis of SG1120−1202 (Gonzalez et al. 2005, hereafter G05), an
assembling system of four galaxy groups at z ∼ 0.37 discovered in the Las Campanas Distant
Cluster Survey (LCDCS, Gonzalez et al. 2001). These groups are gravitationally bound and
will merge into a galaxy cluster comparable in mass to Coma by z = 0. The supergroup,
hereafter SG1120, is confirmed by X-ray imaging and optical spectroscopy and has already
formed a red sequence (see, e.g., G05, T08, T09, and Kautsch et al. 2008, Just et al. 2011,
Freeland et al. 2011).

The individual subgroups are in the low-mass regime of X-ray groups, M200 ∼ 1013 to
1014M� and σv ∼ 400 km s−1, and have not yet interacted. The aim of this study is to
determine the total matter distribution in the system (dark and baryonic) and to constrain
individual halo masses.

This paper is organized as follows. We summarize the general framework for weak lens-
ing in Sect. 2. In Sect. 3 we briefly describe the data we use, while Sect. 4 covers the
framework of measurement and analysis methods. In Sect. 5 we discuss the results and the
scientific implications. Section 6 gives a summary of our conclusions.

Throughout this paper we assume a Planck (Planck Collaboration et al. 2014) cosmology
with ΩM = 0.3183, ΩΛ = 0.6817 and H0 = 67.04 km s−1 Mpc−1.

2.2 Weak lensing framework
Gravitational lensing is the effect of curved space-time on the paths of light rays from distant
sources to the observer as they pass through the potential of foreground structures. This
geometrical effect leads to a displacement of point sources on the projected plane of the sky.
The differential effect on extended sources leads to magnification and distortion effects. This
is commonly described as a coordinate transformation x′

y′

 =

 1 − κ − γ1 −γ2

−γ2 1 − κ + γ1


 x

y

 , (2.1)

where the trace component κ is known as the convergence and the reduced symmetric part is
determined by the gravitational shear (γ1, γ2).

Since we do not know the intrinsic source sizes or magnitudes, we can only measure the
net distortion or reduced shear (g1, g2) ≡ (γ1, γ2)/(1 − κ): x′

y′

 = (1 − κ)

 1 − g1 −g2

−g2 1 + g1


 x

y

 , (2.2)

where the transformation is written as a multiplication of (1 − κ), which we do not identify,
and a distortion matrix describing the alignment of lensed sources in the foreground potential.

The observed shape of a background source is not a pure tracer of the gravitational lensing
effect, but the combined effect of an intrinsic galaxy shape and any distortion of that shape,
including gravitational lensing. Systematic effects such as telescope aberrations and detector
systematics likewise contribute, which need to be corrected for.
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The uncertainties the intrinsic shapes introduce is referred to as shape noise, and the
amount of background sources available determines the precision of the results. The shape
noise averages out statistically if we assume that the background sources are randomly ori-
ented intrinsically. If faint members of the foreground structure are not identified and re-
moved from the sample of background sources, these shapes will not be affected by gravi-
tational lensing, but might be aligned with the potential of the structure under investigation.
These effects are known as intrinsic alignment (see, e.g., Mandelbaum et al. 2006). However,
recent results suggest that intrinsic alignments should have negligible influence for current
cluster weak lensing studies (Sifón et al. 2015b).

The average measured distortion, corrected for systematic effects, can then be related to
the projected density distribution in the lensing structure through

κ(θ) =
4πG
c2 Σ(θ)

DolDls

Dos
, (2.3)

where θ represents the angular coordinates on the plane of the sky, Σ(θ) is the projected
density distribution, and Di are the angular diameter distances between the observer, lens, and
background sources (luminosity distances, sometimes written as Dl, are not used throughout
this paper).

Normalized by 4πGc−2, the convergence κ is therefore also known as the dimensionless
surface mass density, directly related to the lensing density distribution and the lensing ge-
ometry. For axisymmetric lenses, |γ|(θ) = κ̄(< θ) − κ(θ) with κ̄(< θ) the mean surface mass
density within a radial separation θ = |θ| to the lens centroid.

2.3 Data
For this project we made use of results of an extensive multiwavelength data set (see, e.g.,
G05, T08, and T09).

Key to our lensing analysis are optical data, consisting of high-resolution HST/ACS1

imaging used for shape measurements, as well as VLT/VIMOS (Le Fèvre et al. 2003),
VLT/FORS2 (Appenzeller et al. 1998), and Magellan/LDSS3 spectroscopy.

We also used the X-ray temperatures based on Chandra/ACIS imaging and stellar masses
inferred from VLT/VIMOS BVR photometry (T08) and complement our optical color infor-
mation with KPNO/FLAMINGOS near-infrared (NIR) Ks imaging.

We use α = 11.h19.m58.s0, δ = 12◦03′33.′′0 as center of coordinates, which roughly is the
center of the VIMOS imaging data. To convert angular to physical separations, we use a
reference redshift of z = 0.37; this is the median of the redshifts of the four BGGs.

2.3.1 HST imaging
The HST/ACS imaging data were taken in July 2005 and January 2006 and consist of ten
pointings, forming a contiguous 11′ × 18′ mosaic. Each tile was observed in F814W
(0.′′05/pixel) for 2ks over four dithered exposures. Figure 2.1 shows the layout of the different
pointings.

1Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope
Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc.
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Figure 2.1: Layout of the VLT/VIMOS pointings (red) and HST/ACS pointings (blue). The detected
X-ray peaks are shown as well (gray), with the radius of the circles 0.5 h−1 Mpc. The X-ray peaks 1
and 6 (light gray) are associated with structures at higher redshift, beyond SG1120 (G05).

We reduced the data with the same pipeline as employed in Schrabback et al. (2010),
which uses MultiDrizzle (Koekemoer et al. 2003) to stack exposures and remove cosmic
rays. It also includes careful refinement of shifts and rotations between exposures as well as
optimized weighting.

Schrabback et al. (2010) found that using MultiDrizzle with the default cosmic-ray
rejection parameters can cause central stellar pixels to be flagged as cosmic rays, especially
when there are significant PSF variations between exposures. Galaxies are not affected, due
to their shallower light profiles. To avoid differences in the effective stacked PSFs, we created
separate stacks for stars and galaxies, with less aggressive cosmic-ray rejection for the former.

For a more detailed description of the reduction process, we refer to Schrabback et al.
(2010).

2.3.2 Spectroscopy
We employed optical spectroscopy consisting of three subsets of data. The first subset of
targets was selected from a magnitude-limited catalog (R ≤ 22.5), with preference given to
objects in visually overdense regions (G05), and observed using VIMOS. Follow-up spec-
troscopy was selected from Ks catalogs (Ks ≤ 20) and carried out on LDSS3 and FORS2.
Figure 2.2 shows the redshift distribution of the final target selection, using a redshift quality
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Figure 2.2: Redshift distribution of the spectroscopic targets around SG1120. Three significant peaks
are identified between 0.35 < z < 0.37, associated with SG1120; between 0.43 < z < 0.44, unassociated
but concentrated slightly north of peak 1; and between 0.47 < z < 0.49, associated with X-ray peaks 1
and 6.

cut as defined in T08.

Members of the subgroups of SG1120 were initially selected as galaxies within 500 kpc
of their respective X-ray peaks within the redshift range 0.32 ≤ z ≤ 0.39. We narrowed the
redshift range to 0.34 ≤ z ≤ 0.38 without the loss of any members. Figure 2.3 shows a layout
of the targets.

2.3.3 Subgroups

In Table 2.1, we give an overview of the properties of each subgroup, also given in G05,
T08 and T09. We use the same numbering convention for the X-ray peaks and BGGs as
these papers. Subtle differences in the number of group members are due to using the same
selection criteria as T09, but a slightly different cosmology.

Figure 2.4 shows the radial (z, y) distribution of galaxies within 500 kpc of each subgroup,
with 0.315 ≤ z ≤ 0.415. The subgroup associated with X-ray peak 2 and BGG 1 is at a
slightly lower redshift, with an estimated 30 ∼ 40 Mpc in angular diameter distance to the
median redshift of the supergroup.
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Figure 2.3: Layout of spectroscopic targets, overlaid with the VLT/VIMOS pointings. (x, y) = (0, 0)
corresponds to α = 11.h19.m58.s0, δ = 12◦03′33.′′0. Colors correspond to the peaks in Fig. 2.2. The BGGs
are indicated by larger circles.

2.4 Analysis
In this section we briefly describe our method of shape measurement. We discuss the redshift
distribution and selection of background sources. After establishing a reliable background
catalog with robust shapes, we describe how we obtain a qualitative reconstruction of the
projected mass density and complement this with density profiles to the subgroups based on
the BGG and X-ray peak positions.

2.4.1 KSB+ shape measurements
The art of measuring accurate galaxy shapes is an ongoing field of investigation, as wit-
nessed, for instance, by the Shear TEsting Programmes and the GRavitational lEnsing Accu-
racy Testing (Heymans et al. 2006, Massey et al. 2007, Bridle et al. 2010, Kitching et al. 2012,
Mandelbaum et al. 2015, hereafter STEP, STEP2, and GREAT08, GREAT10, and GREAT3).
We make use of the KSB method (Kaiser et al. 1995), the most commonly used and tested
technique in the past decade, and discuss its application to ACS data.

For this study we used the same approach as Schrabback et al. (2007, 2010, the TS
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Table 2.1: Properties of galaxy groups in SG1120 and the two structures identified at higher redshift.

BGG X-ray z T σz N

ID peak (keV) (km s−1)

1 2 0.3522 2.2+0.7
−0.4 303 ± 60 13

2 3 0.3707 1.7+0.5
−0.3 406 ± 83 19

3 4 0.3712 1.8+1.2
−0.5 580 ± 100 29

4 5 0.3694 3.0+1.2
−1.0 567 ± 119 21

1 0.4794 2.3+0.4
−0.3 820 ± 101 19

6 0.4801 . . . . . . 12

pipeline in STEP and STEP2) based on the implementation by Erben et al. (2001). KSB uses
the first-order effects of distortions induced by gravitational shear and PSF on the weighted
second moments of the light distribution of a source to estimate the reduced shear. We detect
objects in the same way using SExtractor (Bertin & Arnouts 1996).

We defined individual weights for this method based on the variance of the shear estima-
tors from this pipeline as

w ∝
(
σ2

sn + σ2
e1

+ σ2
e2

)−1
, (2.4)

where we assumed a minimum variance of σ2
sn, the intrinsic shape noise. Based on the

findings in the STEP analyses, we expect an underestimation of the shears by KSB+ of about
a few percent. We applied the same empirical correction factor as Schrabback et al. (2010) to
account for this expected bias.

The systematic distortion effects due to telescope and optic system give rise to shapes
convoluted by a point spread function (PSF). The main source of variations of the ACS PSF
is caused by changes in the telescope focus, causing spatial and temporal fluctuations (see,
e.g., Schrabback et al. 2007, Rhodes et al. 2007).

A common strategy is to map the distortions caused by the PSF using the shapes of fore-
ground stars, but the average number of stars in our ACS images is ∼ 20 − 40. This leads to
a poorly sampled PSF and an imperfect correction, causing significant residual distortions,
especially detectable at the edges of the images where the tiles overlap slightly. We there-
fore adopted the same strategy as Schrabback et al. (2010) based on a principal component
analysis of the PSF variation in dense stellar fields.

Furthermore, deterioration of the ACS CCDs over time due to constant exposure to cos-
mic rays in space leads to an effect called charge-transfer inefficiency (CTI), causing charge
trails in the CCD readout direction (e.g., Rhodes et al. 2007, Massey et al. 2010, Schrabback
et al. 2010). These effects will affect the measured shear pattern and the reconstruction of the
projected density distribution, and it is therefore important to correct for them.

Here we applied the same parametric CTI model as described in Schrabback et al. (2010)
for the correction of the KSB+ polarizations.

After constructing the shape measurement catalogs, we applied several common selection
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Figure 2.4: Radial (z, y) distribution of all objects (black dots, with a redshift quality of 3 as defined
in T08). Objects within 500 kpc of an X-ray peak and the corresponding selection criteria are shown
in different colors for easy distinction. The BGGs are indicated by larger circles, group redshifts by
dashed lines.

criteria and cuts. These criteria are based on simulations and quality flags of the detection
and shape measurement pipelines, and they depend on the noise properties, on the variance
and convergence of the model fits, and on the object and PSF size.

A list of the various selection criteria can be found in the appendix. Sources that pass
the criteria of all pipelines number 7012, for a source density of ∼ 64 galaxies/arcmin2 with
MAG_AUTO magnitudes i814 < 27.1.

2.4.2 Redshift distribution

We acquired spectroscopic redshifts for 497 objects in our catalogs. The spectroscopic targets
were selected based on magnitude, and preference was given to visually overdense regions,
which means that these spectroscopically confirmed members do not give a complete picture
of the galaxy distribution in SG1120. The brightest confirmed supergroup member has i814 =

17.5, while the spectroscopic survey remains > 50% complete to i814 = 20.5 (T09). We
find that confirmed supergroup members have numbers peaking between magnitudes 19.5 <
i814 < 20.0.

To separate background and foreground sources, we considered that group members are
expected to dominate number counts in the magnitude range of confirmed members, while
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background number counts dominate at fainter magnitudes. We initially selected background
sources as objects with i814 ≥ 22 and assessed possible contamination by faint foreground
objects. Figure 2.5 shows the number density of sources with i814 < 22 and i814 > 22, where
we have used a Gaussian smoothing with a 20” kernel width.

Figure 2.5: Number density of sources with i814 < 22 (left) and i814 > 22 (right), smoothed using
a Gaussian smoothing kernel with a width of 20”. Dense regions are shown as dark in a normalized
grayscale. Contours correspond to fluctuations in integer standard deviations in number density.

Because gravitational lensing is a geometric effect that has a non-linear dependence
on redshift, we took the expected redshift distributions into account, following the same
parametrization as in Schrabback et al. (2010). We show the total redshift distribution of
sources with i814 > 22 in Fig. 2.6. For a given lens redshift, such as in this particular system,
the lensing signal has a linear dependence on the lensing efficiency β = max {0,Dls/Dos}. We
can therefore determine a mean lensing efficiency 〈β〉 for the sources with respect to each
subgroup redshift.

As mentioned earlier, both X-ray peak 1 and 6 (G05) are associated with structures at
higher redshift (both 0.46 . z . 0.48). We must take the gravitational distortions caused by
these background structures into account when trying to isolate the signal from SG1120. We
therefore also determined a mean lensing efficiency for these structures.

We found average lensing efficiencies of 〈β〉 ≈ 0.52 for SG1120, corresponding to an
effective background redshift of zeff ≈ 0.88, and 〈β〉 ≈ 0.42 for the two background structures,
corresponding to an effective background redshift of zeff ≈ 0.95.
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Figure 2.6: Parametric redshift distribution of sources with i814 > 22 (upper panel) and the corre-
sponding distribution in lensing efficiency β (lower panel). In the upper panel, the dashed green line
corresponds to zeff ≈ 0.88 with respect to SG1120 and the dotted red line corresponds to zeff ≈ 0.95
with respect to the two structures at higher redshift. In the lower panel, the dashed green curve shows
the distribution in β with respect to SG1120, with 〈β〉 ≈ 0.52 (dashed green vertical line), and the dotted
red curve the distribution in β for the two structures at z = 0.48, with 〈β〉 ≈ 0.42 (dotted red vertical
line).

Foreground contamination

An intrinsic redshift distribution of sources with i814 > 22 implies that some of these objects
are faint foreground sources or members of the SG1120 structure. Based on our parametric
redshift distribution, we estimate that ∼ 9% of our background sources to lie in front of
SG1120.

Foreground sources are not lensed by the groups. We account for this dilution effect
by assigning β = 0 to this part of the redshift distribution in our definition of the lensing
efficiency above.

This assumes a random field of view, which is not the case for our observations, with
known overdensities at z ∼ 0.37 and z ∼ 0.48. However, Fig. 2.5 suggests no significant
correlation between the distribution of these sources and the galaxy distribution of SG1120.
To estimate possible variations in the number density n of sources with i814 > 22, we derived
an average number density profile around the group centers, as shown in Fig. 2.7.

We used radial bins between 10” < θ < 95” to avoid the BGGs and the edges of the
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Figure 2.7: Variations in galaxy number density n as a function of radial distance from the lens positions,
using the X-ray peaks (diamonds) and BGG positions (squares). Data points are slightly offset for
clarity. Overplotted is the average number density of ∼ 64 galaxies/arcmin2 of the whole ACS mosaic
(black solid line) and the best-fit radial profile (dashed) with 1σ errors (dotted). The estimated effect
of the lensing magnification, µα−1, is shown in grayscale, varying the slope of the luminosity function
between 0 < α < 3. Different shades in grayscale correspond to steps of 0.5× 1014 in group mass M200.

ACS coverage. We also considered only the group centers of groups 2 through 5, as group
6 is not entirely covered by the ACS pointings. Finally, we averaged the signal over all four
subgroups to increase the signal-to-noise ratio.

We then quantified the radial dependence of the galaxy number density by fitting a param-
eterized profile given by n(θ) = (1 + a/θ)nbg, with θ in arcseconds and with nbg = 64/arcmin2

fixed. (In fact, if we allow nbg to vary, we recover nbg = (64 ± 3)/arcmin2.) We found
a = 0.14 ± 1.11, consistent with no trend in galaxy number density with radial separation
from the lens centers.

To interpret this radial number density profile, we have to consider both the presence
of unidentified faint group members and the effect of the lensing magnification µ (see, e.g.,
Bartelmann & Schneider 2001, and references therein). The presence of unidentified group
members would increase the number density. Magnification increases both the observed flux
of background sources, leading to an increase in n, and the solid angle behind the lenses,
causing a dilution of n (not to be confused with the dilution of the shear signal caused by
unlensed foreground objects in the background source sample). It then depends on the slope α
of the luminosity function whether the lensing magnification causes a net increase or decrease
in number density by µα−1, where µ and α depend of the source redshift. Both effects were
shown by Hildebrandt et al. (2009). A decrease could cancel the effect of unidentified group
members.

We wish to obtain a rough estimate of the expected influence of magnification to check
whether it is smaller than the statistical uncertainty. For this we ignored the redshift depen-
dencies of µ and α and considered a wide range 0 < α < 3, which was simply chosen to assess
all possible variations in the magnification without making assumptions about the luminosity
function. We used a group mass of M200 = 1.0×1014, where M200 is defined as the total mass
within a radius of r200 of a halo, where the mean density of the halo is ρ̄(< r200) = 200ρcrit(z).
For a robust estimate, we also considered variations in M200 of ±0.5 × 1014. The results are
plotted in Fig. 2.7 in grayscale.

We estimate possible magnification effects to be smaller than the statistical uncertainties
from potential residual group member contamination. We expect that any residual excess
contamination by member galaxies of SG1120 in the source sample must be small and com-
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parable to regular line-of-sight variations. In Sect. 5.2, we confirm that we do not need to
apply a dilution correction for excess contamination from the supergroup itself.

2.4.3 Lensing analysis
Our approach to determining the matter distribution in SG1120 is twofold. First, we show
that the distribution of light (galaxy number densities, BGGs, and X-ray peaks) is closely
correlated with the underlying mass distribution. Second, we determine the density profile
parameters for each subgroup, taking into account the effect of each subgroup and back-
ground structure simultaneously.

Reconstruction of the mass distribution

We used a Kaiser-Squires (KS, Kaiser & Squires 1993) inversion technique to reconstruct
the surface mass density. We smoothed the data onto a rectangular grid, using a Gaussian
smoothing kernel with a width of 20”, equal to the smoothing used for the galaxy number
densities in Fig. 2.5.

We investigated possible systematic errors in our data by changing the phase of the shear
by 1

2π, which corresponds to rotating the background galaxies by 1
4π. The distortion caused

by weak lensing does not introduce a curl in the shear field, and the resulting reconstructed
map should display only noise in the absence of systematic errors.

Density profile parameters

Earlier studies indicate that the groups are infalling for the first time and have not yet inter-
acted, although X-ray measurements show a possible onset of interaction (G05). We consid-
ered the groups as individual overdensities with spherically symmetric density distributions
and derived halo parameters for each group, including the background structure around X-ray
peak 6.

We considered two types of density profiles and two possible choices of group centroids.
We considered the Navarro-Frenk-White (NFW, Navarro et al. 1996) density profile and
compared this to the singular isothermal sphere (SIS) model.

The SIS profile is determined by a single free parameter, the halo velocity dispersion σγ,
where the subscript γ is used to distinguish this parameter, derived from a two-dimensional
model of the projected mass density, from other derivations of velocity dispersion, such as
the one-dimensional σz derived from the redshift distribution. The advantages of this profile
are its simplicity and the linear dependence of the lensing signal on the squared velocity
dispersion. The tangential component of the shear with respect to the group center is given
by

γt(θ) =
2π
c2 σ

2
γ

β

θ
, (2.5)

where θ indicates the separation from the center in radians. This allows for a straightforward
interpretation of any possible correlation between the fitted parameters of different subgroups.

The NFW profile is usually expressed in terms of its mass and concentration and depends
on redshift. The halo mass M200 is given by

M200 ≡ 200ρcrit(z)
4
3
πr3

200 = 100
H(z)

G
r3

200. (2.6)
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The concentration c200 is defined as the relation between the characteristic shape of the den-
sity profile and r200. The analytical formulas for the shear signal of an NFW profile can be
found in Wright & Brainerd (2000) and Bartelmann (1996).

Because of the lower S/N, the centers of dark matter haloes should not be estimated
directly from the lensing data when determining density profile parameters. Instead, one has
to rely upon visible tracers such as peaks in the X-ray emission of hot gas or the brightest
or heaviest galaxy (e.g., in terms of a stellar mass as derived in T08) in the group or cluster.
If the fitted halo model is offset from the true underlying halo, the fit is inferior and the
introduced systematic uncertainties can be significant (George et al. 2012). In particular, the
halo mass will on average be underestimated, while the uncertainties, most often determined
from confidence levels, will be increased. This leads to both a biased and a less effective
study.

As described in George et al. (2012), there are several choices possible as tracer of the
halo center. These can be based upon a central galaxy, several or all of the associated galaxies,
or the X-ray flux. In this study, the haloes under consideration are part of a coalescing system,
and an offset from the true halo center of some or all of these tracers is not unlikely. However,
the BGGs of the subgroup are also the most massive group galaxies (MMGG, George et al.
2012) in terms of stellar mass and magnitudes in most observed bands and coincide well with
the X-ray peaks (T08). We derived the parameter values using both options and determined
whether these are consistent.

Given the close angular separation of the X-ray peaks, we did not compute azimuthally
averaged profiles. Instead, we computed the total lensing distortion g =

∑
gi for each back-

ground source induced by each of the six foreground structures. This is valid if we assume
g � 1, which is certainly the case for the sources where the distortion is not dominated by
one of the lensing structures.

We then determined profile parameters for each subgroup using a χ2 minimization. For
X-ray peak 1, we assumed σ = 820 km s−1 from G05 and an order of magnitude M200 =

3.7×1014h−1M� and assessed the effect of omitting the influence of this background structure.

2.5 Results

In this section we discuss the reconstructed density distribution and best-fit profile param-
eters, and we show that SG1120 is consistent with expectations from hierarchical structure
formation, even though the system is not relaxed.

2.5.1 Matter distribution

In Fig. 2.8 we show the reconstruction of the projected surface mass density. We detect
significant peaks near three of the foreground structures. We do not detect a significant peak
in the density distribution near X-ray peak 2.

We considered the results of our mass reconstruction in a qualitative manner. The peaks
in our surface mass density reconstruction coincide very well with the peaks in galaxy num-
ber density (Fig. 2.5) and X-ray emission (G05), within smoothing scales. We found no
significant ‘dark’ overdensities either, and small offsets between peaks using various tracers
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Figure 2.8: Smoothed map of the reconstructed projected density distribution (left) and the imaginary
control signal (right) where the shear signal is rotated out of phase. X-ray peak positions are indicated
by white crosses and BGG positions by white circles.

are expected in a coalescing system. Finally, the map shows significantly stronger peaks than
the control map.

2.5.2 Individual groups

SIS velocity dispersions

We present the results of the joint χ2 minimization fit of SIS profile parameters around the
X-ray peaks in Fig. 2.9. The reduced χ2 value is χ2

ν = 1.4.
The combined contours of Fig. 2.9 show no features that indicate significant degenera-

cies between the individual group σγ values. While it is to be expected that nearby mass
concentrations influence the shear pattern around an individual lens, we conclude that noise
is a dominant factor in these results. More massive haloes or smaller halo separations can be
expected to increase correlations.

The resulting σγ values are given in Table 2.2. Consistent with the reconstructed mass
map in Fig. 2.8, we do not detect a very significant lensing signal around X-ray peak 2, barely
exceeding the 68% confidence limit.

The velocity dispersion associated with X-ray peak 1 is necessarily kept constant, as the
peak lies outside the ACS mosaic. Upon inspection, it turns out that varying this parameter
between 0 ≤ σ1 ≤ 820 km s−1 does not alter the results by more than 10% of the 68%
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Figure 2.9: Marginalized 2D χ2 distributions of the simultaneous fit to the individual subgroup velocity
dispersions, together with the marginalized 1D likelihoods for each subgroup. Overplotted are the
68.3%,95.4%, and 99.7% confidence levels.

confidence interval for X-ray peak 2, which lies closest to peak 1. The effect is even smaller
for the other groups.

Similar to our assessment of systematics for the mass map reconstruction, we repeated
the fit to a control signal by changing the phase of the shear by 1

2π. The results are consistent
with a control signal of gc ≈ 0. Because of its less favorable lensing geometry (〈β〉 = 0.42),
the constraints for group 6 are weaker, although it is still detected at a significance of σ ≈ 1.6.

Finally, we determined how much our results would be affected if the signal were boosted
by a dilution factor of 1 + (a + σa)/θ = 1 + 1.25/θ for group member contamination, as
discussed in Sect. 4.2, using a conservative 1σ upper limit. We find that this does not alter
the results by more than 37% of the 68% confidence intervals, justifying our earlier approach.

We repeated the fit around the BGGs as tracers of the halo centers. The results are very
similar, with the fitted values also given in Table 2.2. There is some difference with up to 2σ
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Table 2.2: Profile parameter fit results

Subgroup σz σγ (X-ray) σγ (BGG) M200 (X-ray) M200 (BGG)

(X-ray ID) (km s−1) (km s−1) (km s−1) (1014h−1M�) (1014h−1M�)

2 303 ± 60 240+90
−190 230+95

... 0.3+0.1
−0.2 0.2+0.2

−0.2

3 406 ± 83 530+45
−55 425+60

−70 1.1+0.4
−0.4 0.9+0.4

−0.3

4 580 ± 100 450+45
−50 445+45

−50 1.6+0.5
−0.4 1.6+0.5

−0.4

5 567 ± 119 355+55
−70 480+45

−50 0.8+0.4
−0.3 1.6+0.5

−0.4

6 . . . 325+85
−120 305+90

−135 0.7+0.6
−0.5 0.7+0.2

−0.1

deviations between the results for peaks 3 and 5, where the separation between X-ray peak
and BGG is also the largest. The quality of the fit, in terms of a reduced χ2 value, is the same.

M200

In the same manner, we determined NFW profile parameters from the distortion pattern in
the ACS field around the subgroups.

Weak lensing data of individual groups or low-mass clusters do not have sufficient signal-
to-noise to provide useful constraints on M200 and c200 simultaneously. Therefore, we em-
ployed the mass-concentration relation given in Mandelbaum et al. (2008), restricting the fit
to one free parameter, M200. The results of these fits are summarized in Table 2.2, both for
the X-ray centroids and BGGs as tracers of the halo centers.

Scaling relations

G05 showed that the subgroups were consistent with the local TX − σz relation (Xue & Wu
2000), a fact which did not change with more spectroscopic data in T09. Here we did not de-
termine 1D velocity dispersions from the redshift distribution of group members, but assumed
the projections of 3D halo models. Hence, we are not limited by group member identification.
As mentioned before, group centroiding can be a problem.

Although the parameters of individual groups have shifted in this analysis, on average the
groups still lie on the local TX − σz relation, showing a scatter of similar magnitude as the
data in Xue & Wu (2000, Fig. 2.10).

Leauthaud et al. (2010) constrained the LX−M200 scaling relation using weak lensing data
of groups in the COSMOS field. The supergroup as a whole is consistent with this scaling
relation as well, within the scatter (Fig. 2.10).

These interpretations would be reinforced if we did not take X-ray peak 2 into account
and considered the conclusion in George et al. (2012) that BGGs/MMGGs are better tracers
of group halo centers than X-ray centroids.

Even though individual groups do not always lie precisely on the determined scaling
relations, differences in environment and their effect on the astrophysical processes behind
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Figure 2.10: Comparison of the properties of SG1120 with observed σ − T (Xue & Wu 2000, left) and
LX −M200 relations (Leauthaud et al. 2010, right). Results based upon X-ray peaks and BGGs as center
of mass are indicated by crosses and open squares, respectively, while velocity dispersions from G05
and T09 are shown as open diamonds. Horizontal error bars are plotted at the vertical median.

the observables used in these analyses create intrinsic scatter around these relations, which is
averaged out in a stacking analysis such as employed in Leauthaud et al. (2010).

2.6 Summary

We have performed a weak lensing analysis of the coalescing supergroup SG1120 and showed
that the underlying density distribution of matter is well traced by both visual galaxy light and
X-ray emission. The subgroups of SG1120 have not yet interacted, but are expected to do so
within short timescales, as projected separations are of about 1 − 4 Mpc (G05). As such, the
system is a unique demonstration of hierarchical structure formation.

Slight offsets between the peaks in the galaxy distributions, X-ray gas, and the total matter
distributions are well within smoothing scales used and are consistent with an unrelaxed
system on the verge of merging. We found that using either X-ray peaks or BGGs as tracers
for the halo centers (George et al. 2012) has a minor impact on the derived halo parameters,
with results consistent within 2σ error bars. We consider these conclusions to be an indication
of the robustness of our results.

Furthermore, while the groups are close enough to be gravitationally bound (G05), the
individual group halo masses are low enough compared to their separations to treat them as
individual lenses, within parameter error bars.

The fitted profile parameters are consistent with well-demonstrated scaling relations,
within the intrinsic scatter created by astrophysical variations (Leauthaud et al. 2010). This is
further confirmation that the observed structure of SG1120 is consistent with the paradigm of
hierarchical structure formation, providing a unique example of this theoretical framework.

Structures such as SG1120 are rare. In fact, SG1120 should be seen as a single piece of
a much larger puzzle, where confirmation from studies of similar structures is a necessity.
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The structure of SG1120 is uniquely oriented in the plane of the sky, and the subgroups show
no signs of interaction yet, making it well suited to distinguish the various components and
overdensities. An example of a well-studied heavier structure is the Cl 1604 supercluster
(Gal et al. 2008), where the complex structure presents difficulties in determining accurate
masses, either using spectroscopic velocity dispersions (e.g., Lemaux et al. 2012) or weak
lensing analyses of a few selected subclusters (Margoniner et al. 2005, Lagattuta 2011).

Especially the extension of studies like these to individual systems of lower mass like
SG1120 will present a significant challenge, both in detecting such rare coalescing systems
and in obtaining robust and accurate lensing measurements, given the lower S/N. An inter-
esting approach is the combination of large existing spectroscopic group catalogs (e.g., Eke
et al. 2004, Berlind et al. 2006, Tempel et al. 2012, Robotham et al. 2011) and recent or cur-
rently ongoing large sky imaging surveys of various width and depth, designed for lensing
(e.g., Heymans et al. 2012b, Gilbank et al. 2011, de Jong et al. 2013) that are supported by
extensive spectroscopic and color information.
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2.A Quality and selection criteria for background sources
We assigned several quality flags to the source catalogs during detection and shape measure-
ment.

We used the same rms noise model and deblending parameters as Schrabback et al. (2010)
for object detection with SExtrator. In addition to detection flags, we required at least
eight adjacent pixels with values more than 1.4σ above the background. We defined an initial
S/N cut by flagging objects with FLUX_AUTO/FLUXERR_AUTO< 10.

We furthermore selected sources with a minimum size compared to the smearing induced
by the PSF. We excluded sources for which the half-light radius rh (as defined in Erben et al.
2001) compared to that of the average star is not smaller than rh > 1.2r∗h.

Finally, we selected sources with a KSB shape measurement S/N (defined in Erben et al.
2001) larger than 4, to be consistent with KSB+ studies using a similar definition of the source
S/N. In this pipeline, the effect of smearing and shearing by the PSF is for an important part
described by the Pg tensor. To avoid being dominated by noise, we excluded sources for
which Tr(Pg)/2 < 0.1 (see Erben et al. 2001, for technical details and terminology).

In the final source selection, the catalog of 8273 galaxies is reduced to 7012, ∼ 64
galaxies/arcmin2, that pass all quality criteria from detection and shape measurement.





3
Weak lensing by very low redshift

groups: analysis of systematics and
robust shape measurements

Weak gravitational lensing is one of the most direct ways to study mass distributions on a
wide range of scales. Here we attempt to complement dynamical and luminosity based mass
estimations of nearby light galaxy groups with measurements based on weak gravitational
shear.

Shape measurements are derived using two pipelines: the Shapelets technique, describing
the intensity distribution of faint background sources in Gauss-Hermite expansions, and the
extensively used KSB technique. This allows adequate flexibility in modelling the various
distortions that affect the images, such as gravitational shear and systematic effects like the
PSF.

We present shear estimates obtained from wide-field imaging data of 79 light galaxy
groups from the Zürich Environmental Survey. We discuss the level of control of systematic
errors and compare results between pipelines. The robustness of the methods is promising.
We then derive estimates for the velocity dispersion by fitting the lens profile for a singular
isothermal sphere, and discuss estimates for the mass and concentration of the groups, by
fitting a Navarro, Frenk & White profile. This provides results to be compared to those of
groups at intermediate redshifts, exploring ranges in mass and redshift that have not been
studied extensively.

M. Smit, K. Kuijken, T. Schrabback, A. Cibinel, C.M. Carollo, and A. Amara
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3.1 Introduction

Weak gravitational lensing, since its first detection by Tyson et al. (1990), has become an
important and well tested tool in studying the distribution of mass in the universe. The sys-
tematic distortion of background images due to the gravitational bending of light rays by
a foreground density field can be described by a straightforward geometric model (see e.g.
Hoekstra 2005, for a review), instead of relying on complicated physical models of luminous
matter or sometimes sparse dynamical tracers.

In the past decade a standard cosmological model has crystallised out of a wide range
of measurements of increasing precision. In this model, the matter content of the universe
is dominated by a dark, gravitationally interacting component which is thought to form the
background density structure for the formation of galaxies and galaxy concentrations as fun-
damental cosmological building blocks. One of the key aspects in understanding galaxy and
structure formation is therefore testing the relation between the visible over-densities and the
associated dark matter halos.

On larger scales, up to those of clusters and superclusters, and on small scales, the lensing
by individual galaxies first detected by Brainerd et al. (1996), successful estimates of the dark
matter content have been made during the last decade (see e.g. Hoekstra et al. 2004, Man-
delbaum et al. 2006, Heymans et al. 2006). On intermediate scales however, when trying to
detect the common halos of (light) galaxy groups, progress has been slower (see e.g. Mandel-
baum et al. (2006) and Leauthaud et al. (2010) for results in the high mass group regime). An
important reason for this is the lack of systematic surveys of galaxy groups in combination
with robust, extensive catalogues of galaxy groups.

Hoekstra et al. (2001) reported the first measurements of the average mass and mass-to-
light ratio (M/L) of light galaxy groups (∼ 4 members) around a median redshift of z = 0.33,
using groups in the CNOC2. This sample was extended in Parker et al. (2005), who found an
average velocity dispersion of σ ' 245 ± 18 km s−1 and M/LB ' 185 ± 28 h M�/LB�.

As most galaxies are probably found in groups (see e.g. Eke et al. 2004), it is a necessity
to understand the group environment and its effect on galaxy evolution. There are indications
that a significant part of galaxy evolution already takes place in these environments, before
being assembled in clusters (see e.g. Tran et al. 2009). Lensing might prove to be an important
independent tool, when studying light, unrelaxed structures with low numbers members.

In recent years, well-defined group catalogues have become available from large sur-
veys like the Sloan Digital Sky Survey (SDSS, Abazajian et al. 2003) and the 2-degree
Field Galaxy Redshift Survey (2dFGRS, Colless et al. 2001), that allow systematic studies of
galaxy concentrations. Weak lensing may provide a crucial, independent complement to dy-
namical and luminosity-based mass estimations for these systems that are sometimes sparsely
populated and in often unknown phases of evolution. This research, using groups from the
Zürich ENvironmental Survey (ZENS, Carollo et al. 2013), may be a suitable pathfinder for
the Kilo-Degree Survey (KiDS), which is scheduled for 2009 and has an extensive overlap
with the 2dFGRS and this sample.

Weak lensing itself has its own limitations, due to intrinsic variations in the shapes of
distant sources (a statistical limitation called shape noise) and the ever present systematic
errors (most notably the distortions induced by the PSF). In the last decade, several methods
for shape measurements have been proposed and used (see e.g. Kaiser et al. (1995) [KSB],
Hoekstra et al. (1998) and Erben et al. (2001) [KSB+], Bernstein & Jarvis (2002) [BJ02], Re-
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fregier (2003) and Kuijken (2006, hereafter KK06) [Shapelets], Miller et al. (2007) [Lensfit],
among others). In order to make a sensible analysis of the expected weak signal of these
light systems, a thorough understanding of these systematics and an adequate method for
correcting for these is required.

This paper is ordered as follows. In the next section, we briefly describe the data set.
The third section outlines the methods of shape measurement while the fourth presents the
actual measurements, the systematic distortions present in the data, and the robustness of our
shear estimates. In section 5 we present the signal obtained from these measurements and we
discuss several fits to the shear profiles. The final section contains the conclusions.

Unless specifically mentioned otherwise, we assume a ΛCDM cosmology with Ωm = 0.3,
Λ = 0.7 and H0 = 70h km s−1 Mpc−1. Throughout the paper we discuss various selection
criteria for stars and background sources to be used in the final quantitative analysis. Un-
less mentioned otherwise to highlight or discuss the effect of a certain criterion, figures of
source distributions or source comparisons will show the same final selection, to make com-
paring figures throughout the paper intuitively clear, even where the final selection is not yet
completely discussed. Finally, we discuss the determination of the group centres. In figures
and discussions where group (centre) positions are mentioned, we assume the luminosity
weighted mean (LWM) position of the group members as explained in Section 5, except
where indicated otherwise.

3.2 Data

For this analysis we use Wide Field Imager (WFI) observations of 79 nearby galaxy groups
from ZENS, ESO Large Programme 177.A-0680 (Carollo et al. 2013). ZENS is based on a
sample of 1630 galaxies, members of 141 galaxy groups extracted from the 2dFGRS (Colless
et al. 2001), and specifically from the Percolation-Inferred Galaxy Group (2PIGG) catalogue
(Eke et al. 2004). The 141 ZENS groups are a random selection of the complete 2PIGG
sample of 185 which are found in the very thin redshift slice 0.05 < z < 0.0585, and have
at least 5 confirmed members in the 2PIGG catalogue, down to a magnitude bJ = 19.45.
The ZENS sample is thus statistically complete, and free from possible biases deriving from
distance effects. It covers two orders of magnitude in dynamical mass scales, ranging from
poor (∼ 1012M�), to rich galaxy groups.

This paper is based on the optical B and I images for the first set of 79 groups out of the
total sample of 141, that were acquired during several observing runs in January-February
2005 and April 2006-March 2007 with the WFI camera mounted at the Cassegrain focus of
MPG/ESO 2.2m Telescope at La Silla. Each group was observed in 5 dithered exposures in
the B- and I-band, with single exposure times between 131 and 144 seconds. In each band,
the final science image was obtained by taking the median of the five dithered exposures, so
as to remove cosmic ray and CCD defects (see Carollo et al. 2013, for a detailed discussion
of the data reduction).

The 79 groups have a median velocity dispersion of σ ∼ 210 km sec−1 (38 ≤ σ ≤ 691
km sec−1) and a median total luminosity of L ∼ 5.0×1010L� (1.1×1010 ≤ L ≤ 5.9×1011L�).
The median number of catalogued group members is 8, with the number of members ranging
from 5 to 71.

The observations cover a total area of the sky of ∼22 deg2 to a depth of IAB ∼ 22 at S/N
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Figure 3.1: Histogram of the seeing of individual fields, as determined from the location of the stellar
locus.

∼ 10 for extended background sources which we use for our analysis, for a total of more than
105 sources (∼ 2000 per field, ∼ 2 arcmin−2 ). The selected fields have a median seeing in
the I-band of ∼ 1.0′′ arcsec (Figure 3.1), ranging between 0.75′′ and 1.35′′.

Figure 3.2 shows the magnitude distribution of detected sources that pass the selection
criteria that will be discuss in the following sections, i.e. the sources shown are the sources
used in the final scientific analysis, but including sources of magnitudes brighter than the
IAB ≥ 19 magnitude criterion used. The magnitude distribution is shown as

neff(I) =
Neff(∆I)
Neff,tot

(3.1)

where Neff,tot is the effective total source count, including individual weights discussed in
Section 3, so the sum of the histogram equals 1.

3.3 Methods
Weak lensing by a foreground density distribution introduces a systematic alignment of back-
ground sources. Hence, the (reduced) gravitational shear can be estimated from the shapes of
these sources. Any systematic effect that distorts these shapes and can mimic the gravitational
lensing signal or affect our shape measurements, such as atmosphere, camera distortion, and
pixelisation, needs to be identified and corrected for.
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Figure 3.2: Magnitude distribution of the background source sample, determined by the selection crite-
ria discussed in this paper, but including sources of all magnitudes, represented as part of the effective
total source selection, so the sum of the histogram equals 1. The light grey area represents the sources
used for the final quantitative analysis. The dark grey area represents sources with 18 ≤ I ≤ 19, which
are not used in the final analysis.

In this section we briefly discuss gravitational lensing and the Shapelets method intro-
duced in KK06. The KSB method and various modifications have been extensively used
and were discussed in the aforementioned papers. Therefore, we only briefly touch upon the
implementation we use. Both methods have been tested in the Shear TEsting Programme
(Heymans et al. 2006, Massey et al. 2007, hereafter STEP) and for a thorough discussion of
the results, we refer the reader to these papers.

3.3.1 Weak gravitational lensing terminology

The light rays emanating from different parts of an extended source in the background of
a gravitational lens will experience different parts of the (projected) lens potential and will
therefore be deflected slightly differently. The resulting change of the source shape, essen-
tially a coordinate transformation I(x, y) → I(x′, y′) is described in terms of the convergence
κ and the shear: (γ1, γ2)  x′

y′

 =

 1 − κ − γ1 −γ2

−γ2 1 − κ + γ1


 x

y

 (3.2)
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Since we don’t know the intrinsic source sizes or magnitudes, we can only measure the net
distortion or reduced shear (g1, g2) ≡ (γ1, γ2)/(1 − κ): x′

y′

 = (1 − κ)

 1 − g1 −g2

−g2 1 + g1


 x

y

 (3.3)

where the transformation is written as a multiplication (1− κ), which we don’t identify, and a
distortion matrix describing the alignment of lensed sources.

The tangential shear g+, often termed the E-mode, is defined as the reduced shear g1 in the
coordinate system with the lens at the origin and the x-axis tangential to the line connecting
the observed angular positions of the lens and the source. The g2 component in the same
reference frame is defined as the cross shear g× or B-mode.

Following KK06, we define the ellipticity (e1, e2) of an object such that a distortion
(−e1,−e2) will circularise the best-fitting model with constant-ellipticity isophotes. This way,
a gravitationally lensed, intrinsically elliptical source can be described as a circular source
being sheared twice: first by (e1, e2) and then by (g1, g2) (see also BJ02).

Background sources display an intrinsic variation in ellipticity and orientation, which is
a form of random (shape) noise in estimating the reduced shear. For a source sample with
shape noise that is indeed random, we expect 〈ei〉 = 0, allowing us to recover an estimate for
〈gi〉 using a sufficiently large source sample.

3.3.2 Shapelets
In the Shapelets formalism introduced by Refregier (2003), the light distribution of a source
is expanded in the orthonormal basis set of Gauss-Hermite functions. This allows for a flex-
ible model and has the advantage that the behaviour of these basis functions under simple
transformations (such as an applied shear or smearing by a PSF) is well understood. A PSF
model can then be constructed from the shapelet expansions of bright stars in the image, for
which the expansions of sources can be corrected in a consistent manner.

In this analysis we use the KK06 implementation of Shapelets (the KK pipeline in STEP),
which describes sources as sheared circular objects. As mentioned above, the measured el-
lipticities are then geometric: a superposition of the intrinsic shape, expressed as a shear,
and the gravitational shear. To correct for PSF effects, this sheared circular galaxy model is
convolved with the constructed PSF model and fitted to the observed sources.

M = P · (1 + g1S 1 + g2S 2 + δ1T1 + δ2T2)(c0C0 + c2C2 + . . .) (3.4)

Here M is the fitted model, the Cn are the basis functions describing a circular source, cn

are the coefficients to be fitted, S i and Ti are the first order complex shear and translation
operators respectively, γi and δi are the fitted shear and translation (to ensure an optimal
centroid fitting) and P is the PSF convolution matrix. Not only is this numerically more
stable than a deconvolution of the sources, it also allows for error propagation of the pixel
noise.

The sources and stars are all expanded to a fixed order of n = 12 in basis functions,
to avoid truncation biases in the shape measurements. The images contain enough stars to
ensure a well-sampled PSF, N∗ ≈ 900 (n∗ ≈ 1 arcmin−2), and we model the PSF variation of
the field by a polynomial of order 5.
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Based on the pixel noise, we define individual weights for the sources as

w =
(
σ2

sn + σ2
g1

+ σ2
g2

)−1
(3.5)

where σsn is the intrinsic shape noise, to avoid spuriously large weights, and σgi are the
estimated uncertainties in the ellipticity components.

In addition to other selection criteria described in section 4, we select sources with a
minimum size compared to the smearing induced by the PSF. We exclude sources for which
βi > 1.1β∗, where β is the scale radius of the Gaussian basis of the shapelet expansion,
with subscripts indicating the original source before convolution with the PSF and the stars,
respectively.

3.3.3 KSB+
KSB uses the first order effects of distortions induced by gravitational shear and PSF on the
weighted second moments of the light distribution of a source to estimate the reduced shear.
We have obtained an independent shape measurement catalogue using KSB+ based on the
implementation by Erben et al. 2001, with modifications by T.S. (the TS pipeline in STEP).

We define individual weights for this method analogous to those for the KK pipeline,
based on the variance of the shear estimators from this pipeline. Based on the findings in
the STEP analyses, we expect an underestimation of the shears by KSB of ∼ 8%. We have
applied a ‘fudge-factor’ to account for this expected bias, based only on the results from
simulations.

In addition to other selection criteria described in the following section, we filter for KSB
shape measured S/N ≥ 4, to be consistent with KSB+ studies using a similar definition of the
source S/N. In this pipeline, the effect of smearing and shearing by the PSF is for an important
part described by the Pg tensor. To avoid being dominated by noise, we exclude sources for
which Tr(Pg)/2 < 0.1 and the half light radius of the source compared to that of the average
star is not at least rh > 1.2r∗h (see Erben et al. 2001, for technical details and terminology).

3.4 Shape Measurements
We explain and justify an a priori selection and exclusion scheme, completely ‘blind’ to the
final scientific result.

For our analysis we use as mentioned earlier only sources which are detected at a mini-
mum S/N of ∼ 10 in flux. Any sources which suffer from very close neighbours, truncation
effects due to chips edges or other uncertainties in their photometry are flagged and excluded.
Any remaining neighbour that is extended enough to affect the intensity distribution of the
source will induce power in high order coefficients. Since these should be close to zero in
our shapelet expansions, we flag and exclude these sources as well.

We estimate a shape noise of σsn ' 0.25 in the KK measurements, and σsn ' 0.28
in the TS measurements. The presence of noise in any real data incurs a small fraction of
unrealistically large ellipticities, expressed as a shear greater than unity. We exclude any
sources with estimated errors σg > 0.4. In the case where we calculate statistical averages,
sensitive to outliers, we also exclude total ellipticities |g| > 2, which is not too strict in order
to avoid inducing a bias in the observed distribution in ellipticities.
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At the edges of the field of view, systematic distortions are often most severe, but close
to edges of the detector there are not always enough stars to optimally model this. In our
selection, we exclude sources from the corners of our images.

For bright sources, the stellar locus is well separated from the galaxy distribution. For
faint sources, contamination of one by another is almost a certainty. We only use unsaturated
stars with IAB ≤ 22 for PSF modelling. As mentioned in the previous section, we exclude
galaxies smaller or comparable to the widest stellar images from our selection, on a field by
field basis to account for variations in the seeing.

In the rest of this section, we discuss the robustness of our shape measurements and the
sensitivity to residual systematic effects. We estimate the redshift distribution of the sources
and possible contamination by faint foreground sources. This leads to the final selection
criteria for background sources to be used in the gravitational lensing analysis of section 5.

3.4.1 Robustness

To investigate the robustness of our shape measurement methods, we have made several con-
sistency checks and compared the results.

Comparing methods

In the left panel of Figure 3.3, we compare the shear estimates derived by the KK and the TS
pipelines. Taking into account the uncertainties in both sets of measurements, we fit a linear
relation

gi,TS = (1 + m)gi,KK + c (3.6)

where m represents a multiplicative bias and c an additive bias. Comparing ∼ 1.5 × 105

sources, we find an excellent agreement between the pipelines on this data set, with very
tight constraints on the biases, giving m ' 0.1 ± 0.1 % and c = 0.0 ± 0.1 %. Only for the
noisiest outermost contour, a slight bias at very high ellipticities can be argued for.

Although no bias means that the measurements are on average the same over the whole
selection, the variance perpendicular to the best fit line gives an indication of the tightness
of the correlation, or the variation between individual measurements. We measure a standard
deviation around the best fit line of ∆g ' 5.6 %, which can be seen as a small, negligible
contribution of random noise compared to the estimated shape noise of our source selection.

This result is a confirmation of the robustness of our shape measurement techniques and
for this data set, we can conclude that the two pipelines essentially give the same measure-
ments. The estimated uncertainties and the associated weights do vary between the methods.

Stacked images and single exposures

Using the same initial detection catalogues derived from the stacked science images, we have
run the Shapelets pipeline on individual exposures for a single field. These single frames are
noisier by a factor of

√
5 and the contribution of the PSF anisotropy pattern to the reduced

shear can change significantly from exposure to exposure (see Figure 3.4). These single
exposures may contain more defects that are removed in the final dithered stacking, which is
why the stacked images were used for detection.
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Figure 3.3: Left: Shear estimates obtained using the KK Shapelets pipeline compared to shear estimates
using the TS KSB+ pipeline. Only at the outermost contour, high ellipticities might start to show a very
slight bias. Middle: Shear estimates obtained from single exposures of a single field compared to shear
estimates obtained from the final stacked image. Right: Ellipticities as measured in the “lower” area
of the field of view compared to ellipticities of the same sources as measured in the “upper” area of an
overlapping field of view. From left to right, the contours exhibit more noise due to statistical power.
The spread around the best fit line is comparable. In each figure, the greyscale represents the number
count of sources as a 2D histogram. The solid contours, where plotted, correspond to 90%, 70%, 50%,
30%, 10%, 7%, and 4% in counted sources. The solid lines represent the best fit line ey = (1 + m)ex + c
and the dashed lines represent a 1σ deviation in m. For the left panel m = 0.1± 0.1 % and c = 0.0± 0.1
%. For the middle panel, m = −1.1 ± 2.2 % and c = 0.0 ± 2.2 % . For the right panel, m = 0.2 ± 0.3 %
and c = 0.1 ± 0.3 % .

One of the key questions in the development of accurate shape measurement techniques
is the effect of stacking exposures with different PSF on the shapes of the measured sources.
Since we have argued earlier that the Shapelets formalism is in principle a method with good
flexibility to fit a variety of shapes, we investigate here the performance on the individual PSF
patterns for a field where there is significant variation, and the resulting stacked PSF.

In the second panel of Figure 3.3, we compare our shape measurements to ellipticities
derived from single exposures, logically only selecting source coordinates actually present
in all these exposures. This means we select only stars and background sources from areas
on the stacked images that are covered by each of the five exposures, resulting in chip-like
regions, as shown in Figure 3.5.

The resulting ellipticities seem slightly noisier than those of the stacked frame, but tak-
ing into account the slightly larger measurement error estimates, we find no significant bias
between the measurements. The best linear fit gives m ' −1.1 ± 2.2 % and c = 0.0 ± 2.2 %.

As we have only ∼ 6000 sources in this particular field, we lack the statistics from the
comparison between the KK and TS pipelines, which results in visually noisier contours. The
deviation from the best fitted line is comparable: we measure a standard deviation of ∆g ' 12
%, roughly the expected factor ∼

√
6 higher compared to the spread around the best fitted line

in the left panel of Figure 3.3.
Another important observation is the lack of bias in the fit between ellipticities. This

means that, although the uncertainty estimates are sensitive to the level to which sources
extend above the noise, when taking the proper weight factors into account both approaches
give the same result, adding to the robustness of the shape measurements.
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Figure 3.4: Variation of the PSF and PSF correction over exposures of one field. Panels (a) and (b)
shows the PSF modelling of an exposure where the pattern displays an almost pure negative g1 quanti-
tatively; visually, the stars seem to be aligned vertically. In the exposure shown in panels (c) and (d),
the PSF introduces an almost pure negative g2: the pattern of the PSF seems predominantly diagonal.

Overlapping fields

A few of the groups lie close enough to another group from this sample, that observation
overlap slightly. This gives us the opportunity to compare measurements of the same sources
at different locations in the field of view. In the third panel of Figure 3.3, we compare ∼ 600
sources that are detected in two fields.

The choice in which measurement to use as ‘reference’ value and which as ‘comparison’
value is completely free. In these data, the x and y image coordinates are almost perfectly
aligned with right ascension and declination respectively. In Figure 3.3 we compare the
measurements of the northernmost of the two fields, in which the sources lie predominantly
in the lower part of the field (i.e. have a lower y image coordinates), to the measurements in
the southernmost of the two fields, in which the same sources are detected higher in the field.

We have also made the same comparison selecting on the image x coordinate and we
have even made the comparison using random selections. The results in all cases are iden-
tical within significance. It is less instructive to fit a linear relationship in this case, but for
completeness we note here that we find m = 0.2 ± 0.3 % and c = 0.1 ± 0.3 %. A more
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Figure 3.5: The areas on the stacked image that are covered by all five individual exposures. As an
example, we show the positions of the stars over the field. Diamonds represent stars in areas with a full
depth of exposures.

important result is that the variation around the best fit line is, within significance, the same
as for the comparison between the KK and the TS pipelines. We find a standard deviation of
∆g ' 5.0 %.

3.4.2 Possible systematics

Given the consistency of our shape measurements between independent methods and ob-
servations, we expect any remaining systematic signal to be carried in the actual shapes of
background sources and not to be introduced by the measurement thereof.

Since this survey specifically targets groups of galaxies, a concern with this dataset is that
we are not dealing with random fields. Although there are a few exceptions, in most of the
fields we expect an overdensity concentrated near the center of the field of view. Several di-
agnostics that are devised for random fields, such as the estimation of a remaining correlation
between the PSF and the corrected source shapes, become difficult and less meaningful to
interpret.

Near the edges and corners of any field of view, fitted models such as those for the PSF
variation or astrometric corrections are expected to become less constrained. For a sample of
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lenses predominantly located near the center of the field of view, possible systematics induced
by these effects occur at roughly the same distance from each lens and will most likely not
disappear by averaging over the lenses.

Astrometric effects

Roughly 30% of the fields have sufficient overlap with SDSS to estimate the possible pres-
ence of astrometric distortions. Using the SDSS positions as a reference, we determine the
displacement of sources in our catalogues and investigate whether the displacements are ran-
dom or display a pattern dependent on position on the field. The median displacement is
∼ 1.8 pixels or ∼ 0.4′′.

Intuitively, one can understand the effect of astrometry as a distortion as follows. If the
field is slightly stretched in the x direction (or compressed in the y direction), this would in-
duce a small, positive e1: on average, all sources would display a slight horizontal alignment.
Similarly if the field is stretched in the y direction (compressed in the x direction), the effect
would be a small, negative e1.

Following the same reasoning for the diagonal directions for e2, it is clear that we can
detect a possible effect by measuring the variation of the displament (∆x,∆y) of our detection
with respect to SDSS as a function of position:

∂ (∆x)
∂x

−
∂ (∆y)
∂y

and
∂ (∆y)
∂x

+
∂ (∆x)
∂y

(3.7)

for e1 and e2 respectively.
Translating this into (e+, e×) with respect to the groups, we do not detect a significant

deviation from zero at any distance from the expected lens positions, with maximum error
bars of the order of 10−4.

PSF discontinuities

As already mentioned, a dominant source of systematic distortion of source shapes is the PSF.
Using the shapelet expansions of the stars, we investigate in Figure 3.6 how much spurious
signal can be expected to be contaminating the true lensing signal. The differences between
the shapes of the stars and the PSF model fitted to those stars should be consistent with zero
for any observation. This provides a diagnostic for residual PSF distortions present in the
data that should not be affected by image geometry or lens positions in the fields of view, as
long as the distribution of foreground stars is sufficiently random.

Plotted are both the tangential and cross distortion deduced from the stellar shapes, mimic-
ing a (g+, g×) induced by the original PSF, and the residual effect carried in the stars after cor-
rection. The average PSF pattern exhibits only a small cross signal which largely disappears
after correction. The tangential pattern shows more variation, however. While the average
residual distortion after correction for the PSF vanishes by construction, there remains a sub-
percent but significant postive signal close to the group centers and a similar but negative
signal on large scales.

To investigate the cause of this residual signal, we have looked at the spatial variation of
the stellar residuals over all fields. In Figure 3.7 we show one of the results of these tests, the
variation of residual ellipticity of foreground stars over the field. We have used all ∼ 6 × 104

stars of all fields and their positions with respect to the central pixel of each image.



Chapter 3: Galaxy groups in ZENS 53

Figure 3.6: Tangential ellipticity (e+) and cross signal (e×) with respect to the ZENS group centres,
carried in the stars before (red) and after (blue, slightly offset to the right) correction for the PSF. The
total number of stars used is ∼ 6 × 104.

The layout of the WFI chips stands out clearly, showing higher residuals in regions that
lie between chips in one or more exposures. This is to be expected, as the PSF model is
dominated by the chip-like regions covered by all individual exposures. This model is less
representative in the regions where one of more exposures don’t contribute to the PSF, result-
ing in a less accurate PSF correction in these regions.

To test the effect of these PSF residuals in the stars, we plot in Figure 3.8 the same
tangential and cross distortions as in Figure 3.6, but using only stars that are covered by all
individual exposures. The result is a significant improvement in the residual tangential PSF
distortion. Except for two of the outer bins, the signal carried by the stars disappears after
PSF correction, showing that the PSF model is much more accurate in these regions. The
residual cross signal is also dimished further, being consistent with zero on all scales.

For our PSF model and correction and for the analysis and interpretation in Section 5,
we will only select stars and background sources that are covered by all individual exposures.
This selection reduces the number of stars and background sources by approximately 35%, to
N∗ ≈ 3.5 × 104 and Ns ≈ 105. A more efficient approach would be to account for the PSF of
each individual exposure and combine the information, similar to the lensfit pipeline (Miller
et al. 2007), but this is beyond the scope of this project.
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Figure 3.7: Residual absolute ellipticities of the stars after correction for the PSF, represented as a grey
scale, dark where the residual signal is higher and lighter where the PSF correction is more efficient.
The residuals are most prominent in regions of the image not covered by all individual exposures, where
the PSF model is probably less accurate, resulting in the grid pattern around the eight chip-like regions
as shown in Figure 3.5.

Other effects

As we show later, we attempt to separate the foreground from the background using a mag-
nitude selection. Any faint foreground members contaminating our source sample will not
carry a lensing signal, diluting the final detection. Another possible source of error may come
from faint group members, not identified as such spectroscopically, that contaminate our sam-
ple of background sources. This is a possibility, as the survey specifically targets areas on the
sky with an overdensity at the lensing redshift. If this affects our signal, we expect it to be
diluted as well (Mandelbaum et al. 2006).

In the next section, where we determine the foreground-background separation and cal-
culate lens signal and efficiency, we will show that this contamination is likely to be minimal.

3.4.3 Background redshift distribution
Since the groups are relatively close by, the lensing geometry is far from optimal. However,
an advantage is that we can use many background sources, selecting all sources with IAB ≥ 19,
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Figure 3.8: The tangential ellipticity (e+) and cross signal (e×) carried in stars that are present in all
individual exposures, before (red) and after (blue, slightly offset to the right) correction for the PSF.
The total number of stars used is ∼ 3.5 × 104.

resulting in a selection of 19 ≤ IAB ≤ 23. Using the first epoch results of the VIMOS VLT
Deep Survey (Le Fèvre et al. 2005, hereafter VVDS), we estimate a median redshift of the
selected background sources of z ∼ 0.43.

In Figure 3.9 we show the expected redshift distribution of the selected source sample,
taking into account the full VVDS redshift distribution for each magnitude and the individual
weights described in Section 3. The dashed line represents the median redshift of the ZENS
group sample.

The strength of the gravitational shear signal for a given lens depends of the distances of
the observer to the lens (Dd), the background sources (Ds) and the distance from the lens to
the source (Dds). With lens redshifts between 0.05 < z < 0.0585, we calculate an angular
diameter distance range of the lenses to be 202 ≤ Dd ≤ 233 h−1 Mpc. Taking into account the
variation in lens redshifts and the full estimated background redshift distribution, we calculate
the variation in lensing efficiency Dds/Ds, shown in Figure 3.10.

The weighted mean lensing efficiency is found to be Dds/Ds = 0.86, shown as the dashed
line in Figure 3.10, offset from the main peak due to the skewdness of the distribution. Since
the gravitational shear signal is linear in Dds/Ds, we can use this single number to relate
reduced shear to physical quantities such as velocity dispersion and lensing mass.
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Figure 3.9: Expected redshift distributions for selected background sources with I ≥ 19, represented
as part of the effective total source selection. The high redshift tail of the distribution extends beyond
the plot. The dashed line shows the median ZENS group redshift. For completeness, the dark grey
histogram shows the expected redshift distribution of sources with 18 ≤ I ≤ 19, corresponding to
Figure 3.2.

Foreground-background separation

Comparing to the VVDS redshift distribution, we expect about ∼ 0.6% of our background
sources to be at the same or lower redshift than the groups. More strictly, sources at or
just beyond the lens redshift can be seen as contamination as well as they will not carry much
signal and mostly contribute noise. As a more conservative estimate, we expect ∼ 3.5% of our
background selection to lie at a redshift below z = 0.1. For foreground objects unrelated to
the galaxy groups, this should be a fair indication. However, as said before, the ZENS targets
areas on the sky with an overdensity at the lensing redshift, so these estimates should be
read as lower limits due to possible faint group members that haven’t been spectroscopically
identified in the 2PIGG catalogue.

If there is a significant contamination of unidentified, faint group members, we expect an
increased source density near the center of the groups, instead of a uniform background dis-
tribution. We attempt a more accurate estimate of the possible contamination by randomizing
positions of background sources before only selecting sources that fall on the chip-like areas
as described in Section 4. We use 1000 realizations for each of the fields and mask the areas
where one or more of the individual exposures has a gap between the chips. We then count
the sources in bins around the group centers and compare this to the actual source count in
Figure 3.11.
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Figure 3.10: Expected lensing efficiency Dds/Ds distribution for selected background sources with
I ≥ 19, represented as part of the effective total source selection. The dashed line shows the weighted
mean lensing efficiency.

We normalize the average source count of the 1000 realizations to 100% in each bin and
normalize the source count of the actual detected sources accordingly. The shaded grey area
represent the variation in the randomizations. The red line representing the normalized, actual
source count shows slightly more deviation from the simulated source counts than is expected
from statistical variation, but we do not see a clear increase in source density in the central
bins.

This method allows us to take into account the variation in areas masked between fields,
due to different dither patterns, as well as source density variations between fields and the
expected locations of the group centers with respect to the center of the images. This does
not account for more complex effects, such as spacial gaps in detection due to very bright
stars (an example of which can be seen in the center of Figure 3.4) or extraction flags due
to coinciding bad pixels from different exposures. It should therefore be kept in mind that
Figure 3.11 serves as an indication.

3.5 Gravitational shear signal and mass estimates
Weighting each field according to the density of background sources and their associated
weights, we derive from the 2PIGG catalogue an average velocity dispersion of σ = 229±21
km s−1 and derived dynamical mass (Eke et al. 2004) of this group sample of Mσ ' 4.1 ±
1.1 × 1013h−1M�.
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Figure 3.11: Source counts in bins around the group centres (red line), compared to 1000 randomi-
sations. The mean simulated source counts are normalised to 100% and the actual data counts are
normalised accordingly. The shaded grey area represents the statistical variation in the randomisations.

This section will cover the estimation of the reduced shear signal, using a weighted statis-
tical mean and convex hull peeling (CHP), to assess the influence of outliers. We estimate the
signal around the luminosity-weighted mean (LWM) positions of the member galaxies and
around the brightest group galaxies (BGGs). To relate our shear signal to physical quantities
such as velocity dispersion an mass distribution, we fit a singular isothermal sphere (SIS) and
a Navarro, Frenk & White (Navarro et al. 1996, NFW) profile to the ensemble average, and
briefly touch upon how well the dynamical and luminous properties of the group correlate
with the lensing signal.

3.5.1 Convex Hull Peeling
Mathematically, the convex hull of a set of points S in Rn is the intersection of all convex sets
in Rn containing S . For our purposes, the convex hull of a two dimensional set of (g1, g2)
points is the minimum subset of points that, if connected, forms a polygon that encloses the
rest of the set.

The CHP or “onion peeling” method for determining the data center of a convex set,
equivalent to the median for one dimension, consists of removing (peeling away) the convex
hull and repeating the process for the remaining subset of points, until one point or no points
are left. If one point is left, it determines the two dimensional median. If no points are left, the
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mean of the last convex hull determines the two dimensional median, similar to the median
in one dimension.

The main advantage of CHP is a lower sensitivity to outliers. Disadvantages include a
less accurate determination of the underlying (g1, g2) (depending on the point cloud distri-
bution) and the inability to apply weights to individual shear estimates. Here, we use it as
an alternative to a direct weighted average, to asses the sensitivity to outliers of our shear
determination.

3.5.2 Group centre of mass

One of the key problems in dealing with light galaxy groups is the determination of the center
of mass. We discuss a priori the motivation for the two most likely tracers for the group center
of mass, the LWM position and the BGGs.

Without external information, such as x-ray observations for heavy groups and clusters
(e.g. Leauthaud et al. 2010), the only way to estimate the position of the center of mass of
each group is using the luminous components, i.e. the member galaxies. One can either
use the average position of the member galaxies, possibly weighted by their luminosities, or
assume that the brightest member galaxy is also the heaviest and is on average located close
the the center of the group halo. One can’t use the lensing signal itself to estimate the position
of the center of mass, not only because in this case the groups are too light to be detected in a
projected mass reconstruction, but also because the signal would, by construction, be biased
towards positive noise peaks.

For this group sample, the weighted and unweighted average positions correspond well
with each other, and we decide to use the luminosity weighted mean positions. For groups
with only a few members and a dominantly luminous galaxy, the LWM position and the
position of the BGG lie close to each other, whereas the richer groups provide more statistical
power.

In Figures 3.12 and 3.13 we plot in dark and light grey the predicted tangential shear
signal around the LWM group positions and the BGGs, using for simplicity a SIS model
based on the 2PIGG velocity dispersion and the background source positions and weights.
To account for the complex masking we applied, we used the locations of the sources used
for shear measurements in order to make an accurate prediction for this lens sample and data
set. First we predict the signal around the LWM positions, both for the case where these
would be a perfect tracer for the center of mass and if the BGGs would actually represent
the center of mass. We then do the same for the expected signal around the BGGs in both
cases. It is clear from Figures 3.12 and 3.13 that an accurate estimate for the center of mass
is paramount.

Overplotted are the weighted mean tangential shear measured with the KK and TS pipe-
lines in each bin. As in Figure 3.3, the two pipelines agree very well within error bars. In
both plots, the cross signal is consistent with zero, as is required by theory. In the left plot, a
clear positive signal can be seen around the LWM group positions, whereas in the right plot,
the signal is consistent with zero on almost all scales around the BGGs. We also note the
diminished signal in the outer bins and propose that this is caused by residual PSF distortion,
similar to Figure 3.8.

This suggests that, at least for this group sample, the LWM positions represent the posi-
tions of the center of mass better than the BGGs. However, we should be cautious against
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Figure 3.12: Binned tangential shear measured around the LWM group positions. The KK (blue) and TS
(red) measurements agree well within error bars. The dark grey shaded area is the predicted tangential
shear for the group velocity dispersions from the 2PIGG catalogue, assuming the centre of mass to
coincide with the LWM group positions and assuming a SIS density profile for each group, where the
thickness represents the spread due to the variation in σ within the group sample only. The light grey
shaded area is the same around the BGGs.

deciding on the measurement that corresponds best to expectations and note that the measure-
ment is very noisy. We have motivated our choice for two possible tracers for the underlying
center of mass and we will continue our analysis using the signal around the LWM group
positions, but we do not presume this assumption to be a general conclusion for light galaxy
groups.

One should keep in mind that for a less accurate estimate of the group center of mass, the
signal is more diluted. This means that a possible improvement in group center determination
could increase the signal and our result might be slightly biased low. However, this effect
could be well within error bars and the conclusion that our result is a lower limit is likely too
strong.

We further note that all bins are completely independent in the sense that each background
source is used only once, neglecting the ∼ 600 sources (∼ 0.5%) detected in two fields.
At larger radii, the effect of background large-scale structure (LSS) can give a correlation
(Hoekstra 2003). Since the groups are at such a low redshift, this effect might be present,
depending on the actual redshift of the lensed background sources.
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Figure 3.13: Binned tangential shear measured around the BGGs. The KK (blue) and TS (red) mea-
surements agree well within error bars. The dark grey shaded area is the predicted tangential shear
for the group velocity dispersions from the 2PIGG catalogue, assuming the centre of mass to coincide
with the LWM group positions and assuming a SIS density profile for each group, where the thickness
represents the spread due to the variation in σ within the group sample only. The light grey shaded area
is the same around the BGGs.

3.5.3 Velocity dispersion

To compare our lensing signal directly to the dynamical velocity dispersion σdyn, we fit a
SIS model. In Figure 3.14, we show the resulting fit to the KK and TS measured tangential
shear, using a weighted mean and a CHP radial binning of the data. Based on Figure 3.8, we
exclude the outer three bins from our fit, although we note that both in Figure 3.8 and Figure
3.14 the outermost bin agrees very well with prediction and fit.

We derive σγ ' 283+94
−150 km s−1 for Shapelets and σγ ' 286+99

−164 km s−1 for KSB+. If we
use CHP to bin the KK data, we find σγ ' 251+90

−151 km s−1. In Table 3.1, we summarize the
results of these fits.

The results agree very well with each other and with the dynamical estimate of σdyn =

229 ± 21 km s−1, although the error estimates show that this is a noisy, albeit significant,
result.
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Figure 3.14: The best fit tangential shear profiles for the weighted averaged KK (upper panel), the
weighted averaged TS (middle panel), and CHP KK (lower panel) bins. The red line is the best fit
SIS profile and the blue lines are the best fit NFW profiles, assuming mass-concentration relations with
c0 = 7 (solid) and c0 = 10 (dotted).

3.5.4 Mass and concentration

We attempt to derive an estimate for the mass and concentration of the average group halo by
fitting a NFW profile, where we keep M200 and c as free parameters. In Figure 3.15, we show
the χ2 distributions over the parameter space, we we have again excluded the three outermost
bins from the fit. We also summarize the results in Table 3.1.

While M200 is relatively well determined, it is difficult with the low signal-to-noise of our
result to get constraints on the concentration parameter c. Only for the weighted KK bins a
lower limit on c can be determined.

Various studies have indicated that the halo mass and concentration are actually corre-
lated, both simulations (see e.g. Neto et al. 2007, Duffy et al. 2008) and observations (Man-
delbaum et al. 2008, M08). Following M08, we assume a mass-concentration relation of the
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Method Full group sample

SIS NFW

Full fit c0 = 10 c0 = 7

σγ M200 c M200 M200

KK 283+94
−150 2.0+3.3

−1.4 6.8+5.8
−4.0 2.3+2.5

−1.6 2.8+3.6
−2.1

TS 286+99
−164 3.2+4.3

−2.4 3.1+4.5
−3.1

(1) 2.7+3.0
−2.0 3.5+3.9

−2.5

CHP 251+90
−151 1.9+2.4

−1.2 2.0+6.5
−2.0

(1) 1.6+1.9
−1.2 2.0+2.6

−1.6

Table 3.1: The best fit profile values for the weighted mean KK and TS measured shear and CPH
bins for comparison, for the full group sample. Velocity dispersion σγ in [km s−1] and masses M200

in [1013h−1 M�]. From left to right: the best fit SIS velocity dispersion; the best NFW fit for two
independent parameters; M200 for c0 = 10 and c0 = 7.
(1) Lower limits not constrained.

form

c =
c0

1 + z

(
M
M0

)−β
(3.8)

where we assume β = 0.1, M0 = 1014h−1M�.
Figure 3.15 shows this relation for c0 = 7, 10, and 13. Our sample of light galaxy groups

falls right in the gap in mass range in M08, between L∗ lenses and richer galaxy groups.
Given the low lensing signal of our data, we only fit the resulting one parameter profile for
c0 = 7 and 10 and present the results in Table 3.1. Figure 3.14 shows the corresponding best
fit NFW profile for a fixed mass-concentration relation with c0 = 7 and c0 = 10.

3.5.5 The heaviest groups

Since most of our groups have only a few members, with more than 75% having N ≤ 10,
an important question is which observed group property (taken from the 2PIGG catalogue
directly) is a good indicator for the total group mass. Since gravitational lensing is sensitive
to all gravitational matter, luminous and dark, it is instructive to compare to group properties
based on the luminous content only.

To investigate how the lensing signal as a tracer of the total (projected) mass distribution
correlate with various possible tracers for group mass from the 2PIGG catalogue, we split
our group sample by dynamical velocity dispersion σdyn, total group luminosity L and group
richness N. For simplicity we again assume a mass-concentration relation with c0 = 7 for the
NFW profile in all cases.

Table 3.2 presents the results for each pipeline and binning method for the various selec-
tions. Although there is an overall increase in significance for the estimate of σγ, there is no
observable trend over selection method, pipeline or binning method. For the M200 estimate,
the selection seems to have no consistent effect.

It is clear that for this study, we are limited by the signal-to-noise of the lensing signal.
These considerations are important, however, when comparing studies of galaxy groups based
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Method Heaviest groups

Selection

σdyn L N

σγ M200 σγ M200 σγ M200

KK 356+102
−145 3.6+5.7

−3.0 333+105
−161 3.5+5.5

−2.9 294+101
−164 2.9+4.4

−2.4

TS 329+102
−152 3.0+4.7

−2.5 274+100
−172 2.1+2.9

−1.7 263+94
−157 2.4+3.2

−2.0

CHP 251+98
−187 2.5+3.6

−2.1 276+101
−178 2.4+3.7

−2.0 297+99
−157 3.2+4.5

−2.6

Table 3.2: The best fit profile values for the weighted mean KK and TS measured shear and CPH bins
for comparison, for the ‘heaviest’ groups. Velocity dispersions σγ in [km s−1] and masses M200 in
[1013h−1 M�], with c0 = 7 assumed in all cases. From left to right: σγ and M200 for groups with the
highest dynamical σdyn; total luminosity L; richness N .

on and using different methods, such as lensing, dynamics and, for heavier groups, X-ray
observations.

3.6 Conclusions
We have been able to determine the gravitational shear signal around a sample of nearby
light galaxy groups, making use of extended sky coverage, providing us with more than 105

background sources, and careful indentification of possible sources of systematic errors.

3.6.1 Shape measurements

A good understanding of possible systematic effects is paramount for an accurate determina-
tion of a subtle signal.

We have used two independent shape measurement methods, the Shapelets pipeline of
Kuijken (2006) and the TS implementation of KSB+ described in Erben et al. (2001), both
tested in STEP. Both methods yield very consistent results and using the shapelet pipeline we
also find consistency between different single exposures and in overlapping fields. This leads
us to conclude that the shape measurements are robust and reliable.

Our observations are well covered by foreground stars, with on average N∗ ≈ 900 per
field for a well sampled PSF. We have used the residual differences between the actual stellar
shapes and the PSF model as a diagnostic that should not be affected by the specific prop-
erties of this data set. We have shown that, except for the regions in the image stacks that
are not covered by one or more individual exposures, the PSF model seems to be very ac-
curate, leading to residual stellar distortions that are consistent with zero in both ellipticity
components on almost all scales. We therefore conclude that a single, overall PSF model is
not accurate in these regions with partial coverage and exclude for our analyses both stars
and sources from these areas. We do caution for a residual tangential PSF distortion on large
scales at the ∼ 0.1% level in the stars and based on these tests do not include those scales in
the final lensing analyses.
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Using SDSS coverage of ∼ 30% of our observations to test for any astrometric distortion
effect, we found excellent agreement, with uncertainties at the ∼ 0.01% level in order of
magnitude. Using the VVDS magnitude-redshift observations, we estimate our foreground-
background separation to be accurate, expecting less than 1% contamination of faint fore-
ground sources. To account for the image geometry and complex masking pattern, we have
used 1000 randomisations of background positions to look for any trend that could indicate
contamination of our source sample by unidentified faint group members and found none.
We are confident that any of these effects are negligible compared to the intrinsic variance for
this data set.

3.6.2 Measured signal

Using both the LWM group positions and the BGGs as tracers for the underlying centre
of mass, we find a significant tangential signal around the LWM positions. The absence
of a signal around the BGGs underlines the sensitivity of the signal to the accuracy in the
determination of the center of mass.

Analysing the signal around the LWM group centres, we use both a statistical mean and a
CHP binning scheme, as the former is an unbiased estimator while the latter is less sensitive
to outliers. Well within error bars, we find good agreement between shape measurement
pipelines and between binning methods, showing the robustness of the detected signal.

3.6.3 Profile shapes

We have fitted both a SIS and a NFW profile to our measured signal and derived estimates
for the velocity dispersion σγ, halo mass M200 and concentration c, summarised in Tables 3.1
and 3.2, that agree well with dynamical estimates (Eke et al. 2004) and studies of light galaxy
groups at higher redshift (Parker et al. 2005). Although the unfavourable lensing geometry,
range in group size and low average group mass leads to large error bars, the estimations for
σγ and M200 are significant. We conclude that it is not possible to accurately constrain c as a
free parameter with this data set.

We also assumed a mass-concentration relation and looked at plausible values for the nor-
malisation constant c0 based on M08. A value of c0 = 7 seems to agree best with results from
both pipelines and binning methods. Using this value, we have investigated the correlation of
our lensing signal with group properties that possibly trace the halo mass, velocity dispersion
σdyn, luminosity L, and richness N. Although there seems to be an increase in lensing signal
overall, the increase in uncertainties from using half of our data set limits the significance of
this trend.

3.6.4 General conclusion

Using independent shape measurement methods, we find overall a good agreement between
gravitational lensing and dynamical methods on the different estimations of the average group
mass content. Our lensing results, although having a low signal-to-noise ratio, agree well
with those obtained from groups at higher redshift. Furthermore, we have shown that weak
gravitational lensing works for these low redshift lenses, where the weak signal barely extends



66 Chapter 3: Galaxy groups in ZENS

above the intrinsic shape noise of our sample of background galaxies, filling in gaps in mass
and redshift ranges.

3.6.5 Future work
Our weak lensing study can be an important, independent result complementing other studies
of the group environment (see Carollo et al. 2009, in prep.), which is the most common
galaxy environment and perhaps dominant in galaxy evolution (see e.g. Tran et al. 2009).
Given the current sample, the lightness of the groups and the lensing geometry, we expect
to have reached the limits of what can be obtained with our current data. Our results show
that lensing can be an useful, practical technique to study matter distributions down to low
redshift and low density.

We look forward to robust catalogues of galaxy groups becoming available for large scale
surveys better or specifically suited for lensing, such as the CFHTLS (see e.g. Parker et al.
2007) or the soon to commence KIDS, which will cover an important part of this group sam-
ple. More detailed studies will be possible with these big surveys, allowing one to investigate
trends e.g. with group richness, redshift and proximity to LSS. Given the promising results
so far in this field, the study of galaxy groups using gravitational lensing has much potential
left to be explored.
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Figure 3.15: The χ2 distributions (greyscale) for the M200, c fits to the weighted averaged KK (up-
per panel), the weighted averaged TS (middle panel), and CHP KK (lower panel) bins. The white
contours show the 68%, 95%, and 99% confidence limits. The red, green and blue lines represent
mass-concentration relations assuming c0 = 13, 10, and 7 respectively.





4
Chasing the peak: optimal statistics

for weak shear analyses

Weak gravitational lensing analyses are fundamentally limited by the intrinsic distribution of
galaxy shapes. It is well known that this distribution of galaxy ellipticity is non-Gaussian,
and the traditional estimation methods, explicitly or implicitly assuming Gaussianity, are not
necessarily optimal.

We aim to explore alternative statistics for samples of ellipticity measurements. An op-
timal estimator needs to be asymptotically unbiased, efficient, and robust in retaining these
properties for various possible sample distributions. We take the non-linear mapping of grav-
itational shear and the effect of noise into account. We then discuss how the distribution
of individual galaxy shapes in the observed field of view can be modeled by fitting Fourier
modes to the shear pattern directly. This allows scientific analyses using statistical informa-
tion of the whole field of view, instead of locally sparse and poorly constrained estimates.

We simulated samples of galaxy ellipticities, using both theoretical distributions and data
for ellipticities and noise. We determined the possible bias ∆e, the efficiency η and the ro-
bustness of the least absolute deviations, the biweight, and the convex hull peeling estima-
tors, compared to the canonical weighted mean. Using these statistics for regression, we have
shown the applicability of direct Fourier mode fitting.

We find an improved performance of all estimators, when iteratively reducing the residu-
als after de-shearing the ellipticity samples by the estimated shear, which removes the asym-
metry in the ellipticity distributions. We show that these estimators are then unbiased in the
absence of noise, and decrease noise bias by more than ∼ 30%. Our results show that the
convex hull peeling estimator distribution is skewed, but still centered around the underlying
shear, and its bias least affected by noise. We find the least absolute deviations estimator to
be the most efficient estimator in almost all cases, except in the Gaussian case, where it’s still
competitive (0.83 < η < 5.1) and therefore robust. These results hold when fitting Fourier
modes, where amplitudes of variation in ellipticity are determined to the order of 10−3.

The peak of the ellipticity distribution is a direct tracer of the underlying shear and unaf-
fected by noise, and we have shown that estimators that are sensitive to a central cusp perform
more efficiently, potentially reducing uncertainties by more than 50% and significantly de-
creasing noise bias. These results become increasingly important, as survey sizes increase
and systematic issues in shape measurements decrease.

M. Smit, and K. Kuijken
Astronomy & Astrophysics, Volume 609, A103 (2018)
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4.1 Introduction
Since the first gravitational shear detections (Tyson et al. 1990), the statistical analysis of
weak gravitational lensing effects has become recognized as a competitive cosmological tool.
With the advent of precision cosmology, meaningful interpretations of statistical agreement
or tension between various models and datasets become increasingly important.

Weak gravitational lensing produces slight magnification and distortion effects by bend-
ing the paths of light rays. Although analyses of the former have produced important scientific
results (e.g., Hildebrandt et al. 2009, Van Waerbeke et al. 2010) and it has in fact been demon-
strated that combined analyses can give better constraints (Hildebrandt et al. 2011, Ford et al.
2012), most scientific information has come from the analysis of weak shear distortions. To
access that information, one has to be able to (1) measure the shapes of lensed background
sources accurately, (2) understand the intrinsic distribution of these shapes and the effects of
shear and noise on statistical inference, and (3) obtain the statistical power to probe the subtle
perturbations of this distribution by weak shear.

For the first part, a multitude of shape measurement methods have been explored, among
which are foremost methods based on surface brightness moments (e.g., Kaiser et al. 1995,
Rhodes et al. 2000) and model fitting methods (e.g., Kuijken 1999, Bernstein & Jarvis 2002,
Hirata & Seljak 2003, Refregier & Bacon 2003, Kuijken 2006, Miller et al. 2007, Kitching
et al. 2008), with various alternative or combined approaches (Bernstein & Armstrong 2014,
Herbonnet et al. 2017, Zhang et al. 2015).

Community-driven projects for optimal and robust shape estimates (Heymans et al. 2006,
Massey et al. 2007, Bridle et al. 2010, Kitching et al. 2012, Mandelbaum et al. 2015) have
led to a further decrease in measurement variances and a better understanding of remaining
systematic effects and biases (e.g., Voigt & Bridle 2010, Bernstein 2010, Kacprzak et al.
2012, Melchior & Viola 2012, Refregier et al. 2012).

For the last part, the last two and a half decades have also known dramatic improvements
in statistical power. Surveys that are finished, ongoing, and planned such as COSMOS1

(Leauthaud et al. 2007), CFHTLenS2 (Heymans et al. 2012b), RCSLenS3 (Hildebrandt et al.
2016), KiDS4 (de Jong et al. 2013), DES5 (Dark Energy Survey Collaboration et al. 2016),
LSST6 (Ivezić et al. 2019), Euclid7 (Laureijs et al. 2011) steadily increase in size (sky cov-
erage and depth) and imaging quality, including a significant improvement in understanding
and correcting for systematic effects (e.g., Heymans et al. 2012a,b, for CFHTLenS).

This increasing statistical power is necessary to overcome the inference limit set by the in-
trinsic galaxy shape distribution, known as shape noise. Unlike many forms of noise, such as
measurement uncertainties that are often dominated by Poisson processes, there is no reason
that the ellipticities of background galaxies follow a Gaussian distribution. In fact, studies of
galaxy morphologies (Lambas et al. 1992, Rodríguez & Padilla 2013) suggest that late type
galaxies may exhibit a roughly uniform axis ration distribution.

This departure from Gaussianity is clearly demonstrated in Section 4.2, when comparing

1http://cosmos.astro.caltech.edu/
2http://www.cfhtlens.org/
3http://www.rcslens.org/
4http://kids.strw.leidenuniv.nl/
5http://www.darkenergysurvey.org/
6https://www.lsst.org/
7http://www.euclid-ec.org/
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the shape distribution of the CFHTLenS shape measurements catalog (Heymans et al. 2012b,
Figure 4.2) to a simulated Gaussian distribution (Figure 4.1). This implies that commonly
used Gaussian estimators, such as the (weighted) mean estimate of the central peak of the
distribution or the variance for its width, are not necessarily optimal for the inference of the
underlying gravitational shear.

For example, if the tails of the ellipticity distribution decline more slowly than the Gaus-
sian exp

(
−x2

)
, then more elliptical galaxies contribute more shape noise. There have been

many weighting and clipping schemes suggested to minimize biases and uncertainties in
weak shear inference (Bonnet & Mellier 1995, Van Waerbeke et al. 2000, Bernstein & Jarvis
2002). Alternative approaches include distribution symmetrization (Zhang et al. 2017), or
using ensembles of galaxies in Bayesian analyses or nulling techniques (Bernstein & Arm-
strong 2014, Herbonnet et al. 2017), so that the step of individual shape measurement before
inference of the underlying shear is bypassed.

In this article, we explore an alternative approach by reviewing statistical estimators that
are more suited to a distribution with a pronounced central cusp and slowly declining tails.
Estimator optimality would include a low or vanishing estimator bias and a high accuracy by
a low spread in estimates. These aspects should be robust for various possible distributions,
as samples of background galaxies are comprised of different populations.

We then highlight the use of these estimators in fitting the shear pattern in the field of view
with Fourier modes (Fourier Mode Fitting, FMF). This approach provides an alternative to
smoothed gridding and locally sparse and therefore poorly constrained estimates. It provides
statistical information constrained by the whole field of view, and incorporates fluctuations
in background number densities and estimated measurement uncertainties automatically. For
subsequent scientific analyses, the Fourier model allows for relatively straightforward, ana-
lytic approach to fundamental quantities, such as a power spectrum or mass density recon-
struction.

We note that we focus on the statistical inference from samples of measured shapes, for
various possible intrinsic shape distributions, that is, the propagation of shape noise. This is
a single but fundamental step in improving the accuracy and fidelity of weak lensing analy-
ses. We do not perform a subsequent cosmological analysis, which would require addressing
other well-known sources of bias and systematic effects. These include for example selection
and detection biases (e.g., Hirata et al. 2004, Miller et al. 2013, Jarvis et al. 2016) among oth-
ers on the instrumental and computational side. Other sources include physical effects that
affects the interpretation of the measured signal, such as the effects of baryons, or the redshift
distribution and intrinsic alignments of lensed background galaxies background sources. The
shear signal we recover in this paper would represent a combined signal, which would then
need to be interpreted.

The remainder of this paper is organized as follows. We will briefly review the necessary
definitions of galaxy shapes and the weak lensing formalism in Sect. 2, referring the reader
to excellent reviews such as Bartelmann & Schneider (2001), Schneider (2006), Hoekstra &
Jain (2008), for more in-depth approaches. We review the necessary statistical framework
in Sect. 3, where we discuss galaxy shape distributions and statistical estimators, including
definitions for efficiency and bias, before expanding on FMF. In Sect. 4 we describe the
various possible simulations and data, and analysis methods. In Sect. 5 we discuss the results
and the scientific implications. Section 6 gives a summary of our conclusions.
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Figure 4.1: Gaussian ellipticity distribution and corresponding axis ratio distribution. Top: a 2D his-
togram of ellipticities. Middle: histogram of the absolute ellipticity |e|. Bottom: histogram of the ellipse
axis ratio q.

4.2 Weak lensing
Gravitational lensing is the effect of curved space-time on the paths of light rays from distant
sources to the observer as they pass through the gravitational potential of foreground struc-
tures. This geometrical effect leads to a displacement of point sources on the projected plane
of the sky. The differential effect on images I(x, y) of extended sources leads to magnification
and distortion effects, know as the convergence κ and the shear γ = γ1 + iγ2, directly related
to the surface mass density. This is commonly described as a coordinate transformation x′

y′

 =

 1 − κ − γ1 −γ2

−γ2 1 − κ + γ1


 x

y

 , (4.1)

resulting in the lensed image I(x′, y′).
Weak lensing magnification analyses (e.g., Hildebrandt et al. 2009, Van Waerbeke et al.

2010) require the intrinsic (distribution of) source sizes or magnitudes. In weak shear anal-
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Figure 4.2: Ellipticity and axis ratio distributions of the CFHTLenS catalog. Top: a 2D histogram of
ellipticities. We note that the ring-like feature at e ≈ 0.8 is due to noisy outliers forced to a maximum e
by the shape measurement pipeline, but see also Figure 4.8. Middle: histogram of the absolute ellipticity
|e|. Bottom: histogram of the ellipse axis ratio q.

yses, the focus lies on the net distortion or reduced shear g = g1 + ig2 ≡ (γ1 + iγ2)/(1 − κ): x′

y′

 = (1 − κ)

 1 − g1 −g2

−g2 1 + g1


 x

y

 , (4.2)

where the transformation is written as a multiplication of (1 − κ) (which leads to the magni-
fication) and a traceless distortion matrix describing the alignment of lensed sources in the
foreground potential.

The distortion effect of weak lensing shear on images of background galaxies depends
on their intrinsic shape distribution. While galaxies often have complex morphologies, it is
adequate to describe images by their quadrupole brightness moments or their ellipticities, and
the respective response to weak shear distortions.

A common definition of the shape of an image with elliptical isophotes is the ellipticity
e = e1 + ie2, defined as the reduced shear needed to create this image from an image with



74 Hoofdstuk 4: Optimal statistics for weak shear

circular isophotes (Bernstein & Jarvis 2002, Kuijken 2006). This gives an axis ratio q = b
a as

q =
1 − |e|
1 + |e|

⇔ |e| =
1 − q
1 + q

=
a − b
a + b

, (4.3)

and position angle θ via
e = |e| (cos 2θ + i sin 2θ) . (4.4)

As an example, we compare a Gaussian (e1, e2) distribution to the distribution observed
in the CFHTLenS shape measurement catalog in Figures 4.1 and 4.2.

This complex notation gives a most straightforward formulation of the resulting ellipticity
ẽ, after transforming an image with ellipticity e by a distortion g, by Seitz & Schneider (1997)

ẽ =
e + g

1 + g∗e
for |g| ≤ 1 , (4.5)

with g∗ the complex conjugate of g.

Figure 4.3: Top: the non-linear mapping of ellipticities (with |e| ≤ 1) by an exaggerated gravitational
shear of g = 0.33 + 0.11i. Bottom: the asymmetry introduced in the ellipticity distribution, highlighted
for the e1-component.

The non-linear effect of gravitational shear on the ellipticity parameters is shown in the
top panel of Figure 4.3. Through statistical estimation, we can attempt to infer from an
ensemble of galaxy shapes the underlying shear, if we assume the intrinsic ellipticity distri-
bution P(e) to be centered around zero ellipticity. In other words, one assumes no preferred
direction on the sky.
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This non-linear response to weak shear distortions gives rise to the asymmetry in the
observed ellipticity distribution, as shown in the bottom panel of Figure 4.3. The shifted
central peak of the distribution is unaffected by this non-linearity and therefore a direct tracer
of g.

The canonical approach is a weighted mean µ, where weighting schemes attempt to min-
imize systematic effects from noise, size and brightness. As observed by Seitz & Schneider
(1997), the expectation value 〈ẽ〉 does not depend on P(e) in the absence of noise. The mean
of an ensemble of measured ellipticities is then an asymptotically unbiased estimator for the
underlying shear g.

In the presence of noise, however, these estimations suffer from unavoidable biases in the
estimated shear (Melchior & Viola 2012, Kacprzak et al. 2012). Furthermore, the variance of
an estimator such as the mean, or more generally, the scale of the estimator distribution, does
depend on the intrinsic ellipticity distribution P(e). Informally put, the smaller the estimator
variance, the more ‘trustworthy’ the estimates and the more efficient the estimator. A more
efficient estimator reduces the uncertainties in and therefore the error bars or confidence
intervals of parameter estimates.

The smearing of the sheared distribution by noise affects central value estimations, but
the peak location itself is still an unbiased tracer of the shear.

4.3 Statistical framework
In this section, we discuss various estimators, after reflecting upon estimator properties, such
as bias, efficiency, and robustness, and their interpretation. We then propose ways to apply
this to fitting individual Fourier modes to a shear field.

4.3.1 Bias, efficiency and robustness

We will use the term bias, or ∆e, when referring to the difference between the central value of
an estimator, such as the expected value or mean 〈ê〉, and the population parameter e. We will
use the term residuals, or ri = ei − ê, when talking about the differences between one sample
estimate and the elements of that sample, that is, the individual measurements ei = ei,1 + iei,2.

We note that we write ri = ei − ê for simplicity throughout this paper, but we employ
Equation 4.5 to calculate the residuals, unless specifically noted otherwise. The absolute
residual ellipticity of a single measurement with respect to the sample estimate is then the
norm |ri|.

The difference ∆e = 〈ê〉 − e, commonly referred to as simply the bias of the estimator, is
formally called the mean-bias µ∆e. An estimator is then called asymptotically mean-unbiased,
if for an increasing number of estimations ê, the mean estimate µê converges toward the pa-
rameter value of the underlying population. This is commonly simply referred to as unbiased.
Here we have changed notation from 〈ê〉 to µê, to emphasize the method of determining the
central value of a set of estimates.

We do this, because there are other possible definitions of unbiasedness, such as median-
unbiasedness, in which case the median estimate M(ê) converges toward the true parameter
value. By the central limit theorem, it is often appropriate to assume an asymptotically normal
distribution of the estimator ê (not to be confused with the distribution P(e) of the population
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parameter e), when the number of estimations increases. This validates the general use of
mean-unbiasedness. In practice, sample sizes needed for convergence toward a normal es-
timator distribution can be very large and one should take care when assuming asymptotic
normality when making statistical inferences from a few measurements.

The efficiency of an estimator can be defined in terms of its variance. For unbiased
estimators, this variance is bounded from below by the Cramér-Rao lower bound (Rao 1945,
Cramér 1946), which in short means that there is an absolute maximum efficiency that can
be obtained. For some distributions, such as the Gaussian distribution, this limit can be
calculated analytically8. In other cases, it is useful to define a relative efficiency

ηê =
σ2

0

σ2
ê

, (4.6)

where σ2
0 is the variance of a comparison estimator, such as the mean. Then, if for example

ηê > 1, the estimator has a lower variance than the mean and is therefore more efficient in
finding the central value of the population parameter distribution. An estimator that achieves
the Cramér-Rao lower bound for all possible parameter values is for this reason also known
as a minimum variance estimator.

Again, if the assumption of asymptotic normality is not appropriate, another definition
of the scale of distribution of the estimator can be used instead of the variance, such as the
median absolute deviation (MAD). In such cases, care should be taken with the coverage of
that scale, which is simply the percentage of estimates with lower residuals than the scale. In
case of a Gaussian distribution, the standard deviation has a coverage of 68.3%. The MAD
has, by definition, a coverage of 50%.

To avoid comparing apples with oranges, we will use chosen percentiles as scale, so the
coverage is defined. For instance, we define the 68.3% scale s68.3 as the residual value for
which 68.3% of the estimates has an equal or lower residual. In case of asymptotic normality,
s2

68.3 will converge to the same value as the estimator variance.
We note that we can do this, since in our simulations the true population parameter value

e is known9. In general, the coverage of a definition of scale is not known, confusing the
interpretation of any relative efficiency.

In conclusion, we define the efficiency of an estimator ê, relative to the mean µe, at a
certain percentile coverage p, as

ηê;p =
s2
µe;p

s2
ê;p

. (4.7)

Finally, we label an estimator ê as robust (in a qualitative manner), when ê retains low or
zero bias and high efficiency in a wide range of possible distributions. A robust estimator is
desirable, since it makes the choice of estimator for a parameter with unknown distribution
more objective. As an example, the mean is optimally efficient in case of a Gaussian param-
eter distribution, but since the mean has low resistance against departures from Gaussianity
(such as outliers), it is not the most robust.

8We will omit a more detailed discussion, since it’s applicable only to certain distributions and not (directly)
relevant to this discussion.

9More accurately, the underlying shear g is known.
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Since we work with relative efficiencies, a conclusive statement about robustness is not
straightforward. We will therefore use robustness to indicate that an estimator is equally or
more efficient than the Gaussian estimator in most or all cases.

4.3.2 Estimators
We have explored various alternatives for well known estimators, which are optimal under
Gaussian assumptions, like the mean and variance. By definition, the mean êµ, or µe, mini-
mizes the variance of the residuals, which makes it a least squares estimator.

In general, optimization estimators are solutions ê that minimize a loss function

S ê =
∑

i

ρ (ei; ê) , (4.8)

such as ρ = r2
i = (ei − ê)2 for the mean.

For this paper, we considered two other optimization estimators, the least absolute devi-
ations estimator (LAD) and the biweight (BI) estimator, and an ordering estimator, namely
convex hull peeling (CHP). In section 4.3.3, we describe Fourier mode fitting (FM), using a
LAD regression approach.

Least absolute deviations

LAD is an optimization approach where the loss function to be minimized is the sum of the
absolute deviations, instead of the commonly used least squares minimization:

S LAD =
∑

i

|ri|. (4.9)

In the one dimensional case, this is the median. In more than one dimension, we talk
about the marginal median, when in each dimension the median is taken independently, or
the spatial median, when minimizing the sum of the distances of measurements to a point. In
many practical cases10, the spatial median is unique, contrary to the marginal median, which
can have multiple solutions. This is one of the reasons we used the spatial median throughout
the rest of the paper.

Another reason is that e1 and e2 should not be seen as independent parameters of the
shape. An ellipticity is defined by an absolute elongation |e| and a position angle θ. The latter
is defined within the context of a chosen frame of reference and therefore so are e1 and e2.
In other words, using the marginal median would introduce an artificial anisotropy, as can be
seen in Figure 4.4.

In concreto, for a set of (ei,1, ei,2) measurements, the mean êµ as an estimator for the net
reduced shear g1 + ig2 minimizes the squared residuals

S µ =
∑

i

(ei,1 − g1)2 + (ei,2 − g2)2. (4.10)

A LAD estimate minimizes the absolute residuals,

S LAD =
∑

i

√
(ei,1 − g1)2 + (ei,2 − g2)2 , (4.11)

10Formally speaking: when the norm is strictly convex.
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Figure 4.4: Comparison of the marginal median (left) to the spatial median, or LAD estimation (right).
Plotted are the estimation biases ∆e for 106 simulation runs, shown as a density in grayscale. Over-
plotted are arbitrary contours of increasing density (equal in both plots), to highlight the anisotropy in
P(∆e). Since e1 and e2 depend on the choice of reference frame, the marginal median introduces an
artificial anisotropy. For the LAD estimations, the residual distances |ri| do not depend on the choice of
reference frame.

which reduces the effect of outliers on the estimate. In one dimension, the LAD estimate
arises as the central value maximum likelihood estimator of the Laplace distribution, which
has a central cusp and more slowly declining tails.

There is no general analytic solution for LAD optimization. LAD can however be formu-
lated as a linear optimization problem for which several iterative methods exist (e.g., simplex-
based methods, Barrodale & Roberts 1973). In practical weak shear analyses, convergence is
generally rapid.

The biweight

An alternative optimization approach is a bi-square weighted loss function (Beaton & Tukey
1974), called the biweight for short, given by

∇S BI =
∑

i

ri

(
1 −

( ri

k

)2
)2

= 0 for |ri| < k , (4.12)

where ri = (ei − ê) are again the residuals and k is a tuning parameter, usually determined by
(an estimate of) the scale of the measured distribution.

A robust choice for k is the median absolute deviation (MAD), setting k = c ·MAD, where
c = 6.0 is optimal for estimation of location for a broad range of distributions (Mosteller &
Tukey 1977). A common approach is iteratively correcting an initial estimate M0 by the
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normalized sum in Equation 4.12:

Mn+1 = Mn +

∑
i ri,n

(
1 −

( ri,n

k

)2
)2

∑
i

(
1 −

( ri,n

k

)2
)2 , (4.13)

which can be interpreted as a normalized weighting of the residuals. In this case, the weight
of a certain measurement increases toward the (current) central estimate, which makes this
estimator a useful complement to the mean and LAD estimators.

In turn, a robust choice for M0 is the (spatial) median. Note that measurements with
residuals |ri,n| ≥ k have effectively zero weight, although these points are not ‘clipped’ from
the sample, since the residuals can change with each iteration. Convergence usually requires
few iterations.

Convex hull peeling

The convex hull of a set of points X in Rn can be defined as the intersection of all convex
sets in Rn that contain X. Informally put, the convex hull is the smallest subset of points that
‘surrounds’ the rest of the set (see Figure 4.5).

Figure 4.5: The method of CHP. The left panel shows a scatter plot with two outliers. The arithmetic
mean is shown as a gray, solid line and the dotted line represents the mean without the two outliers. The
middle panel shows the convex hull of the set of points, which is then removed from the set. The right
panel shows the final result after repeating the process, until the final set of points is equal to its own
convex hull.

There exist various algorithms for determining the convex hull (e.g., Preparata & Shamos
1985). For this paper, we used Delaunay triangulation based on the divide-and-conquer
method (Lee & Schachter 1980).

In the process of CHP, the convex hull of a set of data points is determined and subse-
quently ‘peeled’ from the set, after which the process is repeated (Figure 4.5). When the
remaining set of points is equal to its own convex hull, the final estimate is determined from
these points, for example using the mean or LAD. This makes CHP an ordering approach,
much like obtaining the familiar median for the one-dimensional case by sorting the data,
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instead of optimization11. Among other aspects, it shares the resistance of the median against
outliers.

In this paper, we are interested in the use of CHP in the two-dimensional case of (e1, e2)
measurements in the complex plane, but CHP can be used in higher dimensions as well (see
e.g., Lee 2007, for applications to SDSS quasar data).

Weighting and collinearity

When using real data, a weighting of ellipticity measurements is necessary to avoid or mit-
igate effects, such as noise or intrinsic size and ellipticity, that would confuse or bias the
estimation of the underlying shear. For LAD and biweight optimization, weighting schemes
are readily introduced, analogous to the weighted mean. For CHP, we suggest a possible
weighting scheme, analogous to the one-dimensional weighted median, as follows.

The convex hull comprises a set of points in the (ei,1, ei,2)-plane, with wi the associated
weights, given by the measurement pipeline. The minimum weight on the convex hull is then
subtracted from these weights, after which all points with updated weight wi = 0 are peeled
from the sample. Note that this removes at least one point per iteration, but can lead to point-
by-point peeling and large computation times. A solution with lesser precision but increased
speed would be given by binning the weights in discrete steps.

We also note a possible collinearity problem of multiple ellipticity measurements with
finite precision coinciding. In that case, triangulation has no solution. By combining these
points into one measurement by combining the weights, this problem is resolved.

4.3.3 Fourier mode fitting
One can model a signal, in our case a varying ellipticity, over a one-dimensional range
−L < x < L, writing that signal as a linear superposition of waves, or (Fourier) modes,
An · cos (knx ± φn), where An and φn are the amplitude and phase of the signal mode respec-
tively, and kn ≡

nπ
L are the wave numbers of the modes, showing the periodicity over the range

2L.
It is useful to rewrite this model linearly in its coefficients an · cos (knx) + bn · sin (knx),

where amplitude and the phase are now given by A2
n = a2

n + b2
n and via bn

an
= tan (φn).

This one-dimensional model is readily extended to two dimensions, by considering that
each coefficient depends similarly on y. This gives us αmn;± = cos (kmx ± lny) and βmn;± =

cos (kmx ± lny), or
e(x, y) =

∑
m,n amn cos (kmx) cos (lny)

+ bmn cos (kmx) sin (lny)

+ cmn sin (kmx) cos (lny)

+ dmn sin (kmx) sin (lny) ,

(4.14)

where the wave numbers km and ln represent the spatial frequencies in the x and y directions,
respectively. In two dimensions, we make a terminological distinction between a full Fourier
mode, as given by Equation 4.14, and the individual waves comprising it. The amplitude of
the fluctuations in ellipticity are now given for each mode in m, n by a2

mn + b2
mn + c2

mn + d2
mn.

11Indeed, in one dimension, both approaches to the median are the same.
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This linear model is fitted in a relatively straightforward manner to a sample of measured
or simulated ellipticities. In the absence of noise and for a well-behaved field of view, each
wave component of a Fourier mode is independent and can be fitted separately. We will
discuss the effect of noise in Section 4.5.2.

Applying statistics

To apply these statistics to a shear field consisting of discrete Fourier modes, which by con-
struction is centered around e = 0, the ellipticity measurements should be properly weighted
by the model of the Fourier mode under consideration. We considered the information car-
ried by an ellipticity measurement, which is proportional to the value of the fitted model M,
where M(x, y) can for instance be a single wave like cos (kmx) cos (lny), or a full mode.

Measurements close to the nodes of a wave carry the least information, whereas measure-
ment close to extrema, or antinodes, carry the most amplitude information. We considered
that each ellipticity measurement ei theoretically infers an estimate of the amplitude A, where
A ∈ {amn, bmn, cmn, dmn} by Âi = ei ·M−1. In the case of Gaussian variations around the model,
that is, measurement error distribution, the information scales as the inverse variance of that
distribution, and therefore as the square of the model:

Â =

∑
M2 · e

M∑
M2 =

∑
M · e∑
M2 , (4.15)

where we recover the well known analytic LSQ form. This can be seen as an inverse variance
weighting based on the model-to-noise ratio. For different error distributions, one can allow
a general scaling of the information with the model by Mn, and therefore

Â =

∑
Mn−1 · e∑

Mn . (4.16)

For application with our proposed weighting scheme for CHP, it is instructive to view the
multiplication by weights as shifting the data points, so the central data point(s) or CHP value
matches the amplitude to be estimated. For this purpose, it is practical to write Equation 4.16
as

Â =

∑
|M|n−1 · sgn(M) · e∑

|M|n−1 ·

∑
|M|n−1∑

Mn , (4.17)

where the (e1, e2) data points are first shifted by sgn(M), and then weighed by |M|, be-
fore the weighed estimate is normalized as usual. We show this in Figure 4.6, where we
plot the (e1, e2) values, the same (e1, e2) points shifted by sgn(M), with in this case M =

cos (kmx) cos (lny), and then the associated distribution of the weights |M| over the complex
ellipticity plane as normalized 2D histograms.

4.4 Simulations and data
For this paper, we tested various forms of P(e), using samples of random ellipticities, assumed
to be centered around zero, which we sheared by Eq. 4.5. We have used several approaches
to obtaining these samples.
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Figure 4.6: Ellipticity distribution of a superposition of 9 Fourier modes over the complex (e1, e2) plane,
where we show how we recover a single (e1, e2) amplitude, indicated by the dotted lines. Left: the
Fourier modes, centered around (0, 0) (normalized number counts). Middle: the (e1, e2) points shifted
by sgn(M), with M the model of the amplitude (normalized number counts). Right: the resulting
distribution of weights over (e1, e2), showing a shift toward the amplitude under consideration.

Firstly, we simulated a uniform q distribution, which seems to fit real data adequately
(e.g., Lambas et al. 1992, Rodríguez & Padilla 2013), without assuming any physical mech-
anism that would explain this distribution.

Secondly, we modeled background galaxies as randomly orientated triaxial ellipsoids,
and derived the projected ellipticities following Stark (1977), using axis ratio distributions
fitted to observed ellipticity distributions (Lambas et al. 1992).

In both cases, we compared our results to samples with added Gaussian noise, using real
data shape measurement error distributions to simulate the effect of noise.

Thirdly, we sampled real data, using shape measurement catalogs from weak lensing
observations.

Finally, we compared these various ellipticity distributions and the results from each esti-
mator to results in case when P(e) follows a Gaussian distribution. We examined the behavior
of bias and efficiency of each estimator under the effect of noise, the input shear and the sam-
ple size.

4.4.1 Simulated ellipticity distributions

Uniform samples

We produced random samples with a uniform q-distribution, as an ideal version of the ob-
served distribution of spiral galaxies in for example Lambas et al. (1992), Rodríguez & Padilla
(2013), henceforth referred to as a uniform sample. We used an axis ratio cut-off of q ≈ 0.2
to account for a finite galaxy thickness, following Lambas et al. (1992), which gives rise to
standard deviations in each ellipticity component of σe ≈ 0.25, comparable to the samples
drawn from data.

The resulting axis ratio and ellipticity distributions are shown in Figure 4.7
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Figure 4.7: Ellipticity distributions for a uniform axis ratio distribution. Top: a 2D histogram of ellip-
ticities. Middle: histogram of the absolute ellipticity |e|. Bottom: histogram of the ellipse axis ratio q.
A cut-off near q ≈ 0.2 is suggested by observations and produces standard deviations in each ellipticity
component of σe ≈ 0.25, comparable to most survey shape measurement catalogs.

Projected ellipsoids

A triaxial ellipsoid with axes ã ≥ b̃ ≥ c̃ ≥ 0 can be described by

(cx)2 +

(cy
b

)2
+ (z)2 = constant , (4.18)

with b = b̃/ã and c = c̃/ã. As given by Stark (1977), such an ellipsoid is seen as an ellipse in
projection, given by

( j/ f )x′2 + 2(k/ f )x′y′ + (l/ f )y′2 = constant , (4.19)
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where (x′, y′) are the coordinates in the projection plane and

f ≡ c2 sin2 θ sin2 ϕ + (c/b)2 sin2 θ cos2 ϕ + cos2 θ , (4.20a)

j ≡ c2(c/b)2 sin2 θ + c2 cos2 ϕ cos2 θ + (c/b)2 sin2 ϕ cos2 θ , (4.20b)

k ≡ ((c/b)2 − c2) sinϕ cosϕ cos θ , (4.20c)

l ≡ c2 sin2 ϕ + (c/b)2 cos2 ϕ , (4.20d)

with ϕ and θ the first two orientation angles of the ellipsoid.
For simulations of projected ellipsoids, we assumed Gaussian distributions for b and c,

following Lambas et al. (1992). For elliptical galaxies, we used b = 0.95 and c = 0.55
with standard deviations σb = 0.35 and σc = 0.2. For disk galaxies, we used b = 1.00 and
c = 0.25 with standard deviations σb = 0.13 and σc = 0.12.

The axis ratio was then recovered via

q =

√√√√√√√ j + l −
√

( j − l)2 + 4k2

j + l +

√
( j − l)2 + 4k2

, (4.21)

and the ellipticity through Equation 4.3. The orientation angles of the ellipsoids were ran-
domly distributed. The resulting axis ratio and ellipticity distributions are shown in Figure
4.8.

We will refer to these simulated samples as disk and elliptical samples. We also used
combined samples with a disk to elliptical ratio derived from the CFHTLenS catalog. (See
Table 4.1.)

4.4.2 Data: CFHTLenS
We used data from Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS, Heymans
et al. 2012b). The CFHTLenS survey analysis combined weak lensing data processing with
THELI (Erben et al. 2005, 2009, 2013), shear measurement with lensfit (Miller et al. 2007,
2013, Kitching et al. 2008), and Bayesian photometric redshift measurement (BPZ, Benítez
2000, Coe et al. 2006) with PSF-matched photometry (Hildebrandt et al. 2012). A full sys-
tematic error analysis of the shear measurements in combination with the photometric red-
shifts is presented in Heymans et al. (2012b), with additional error analyses of the photometric
redshift measurements presented in Benjamin et al. (2013).

For our analyses, we selected 4.2 million objects that are well determined and resolved
(lensfit fitclass = 0, non-zero lensfit weight, star_flag = 0, CLASS_STAR ≤ 0.5). We ex-
cluded objects that lie within a mask, with the exception of large, conservative masks around
relatively faint stars and stellar haloes (MASK ≤ 1, see Erben et al. 2013).

The CFHTLenS shape catalog is not an exact representation of the ellipticity distribution
of the observed galaxy population, as it includes measurement noise present in any real data
set. Selecting sources on lensfit weight w or signal-to-noise ratio νSN could on the other hand
introduce selection biases in the galaxy population we wanted to to study. We decided to
use two sets of sources: the complete set, described above, to optimally sample the complete
source population, and a conservative subset with w ≥ 15 and νSN ≥ 20, to reduce the
uncertainty in observed ellipticity, at the possible cost of a bias in the selection.
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Figure 4.8: Ellipticity and axis ratio distributions for distribution of projected ellipsoids. Left: disk
galaxies. Right: elliptical galaxies. Top: a 2D histogram of ellipticities. Note that the ring-like feature
in the left panel is the result of a finite disk thickness. Middle: histogram of the absolute ellipticity |e|.
Bottom: histogram of the ellipse axis ratio q.

For both sets, we split these sources by BPZ spectral type into red (TBPZ < 1.5) and blue
(1.5 < TBPZ < 3.95) galaxies, with a further division between Sbc (1.5 < TBPZ < 2.5) and
Scd (2.5 < TBPZ < 3.95). We found that our conservative selection reduced the number
of galaxies to roughly 25%, almost independent of spectral bin for TBPZ < 3.1. For higher
spectral types, the subset decreased linearly to roughly 10% for the highest spectral bin, which
was an indication that our selection did indeed introduce a modest sample bias.

Table 4.1 gives an overview of the selected CFHTLenS data, while Figure 4.9 shows the
respective distributions.

We drew random subsets from the selected CFHTLenS ellipticities, which we then sheared
by Eq. 4.5. This introduced the implicit assumption that, after the bias corrections described
in Heymans et al. (2012b) and Miller et al. (2013), the central ellipticity was zero, and these
random subsets were approximately drawn from an unsheared, noise-free background galaxy
population.

4.4.3 Simulated noise
In any realistic shape measurement catalog, ellipticities not only have shape noise due to
a finite intrinsic distribution, but suffer from measurement uncertainties as well. For this
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Table 4.1: Overview of the CFHTLenS data used. Column 1 gives the division between BPZ spectral
type (red: TBPZ < 1.5, blue: 1.5 < TBPZ < 3.95, Sbc: 1.5 < TBPZ < 2.5, Scd: 2.5 < TBPZ < 3.95).
Column 2 gives the number N of objects selected. Column 3 gives the 1D Gaussian ellipticity standard
deviation σe, using both ellipticity components after bias correction. In parentheses, we give N and σe

for sources with w ≥ 15 and νSN ≥ 20.

Color N σe

All 4216334 (912828) 0.286 (0.242)

Red 553633 (151939) 0.267 (0.242)

Blue 3662701 (760889) 0.289 (0.242)

Sbc 870295 (219929) 0.294 (0.262)

Scd 2792406 (540960) 0.288 (0.232)

reason, we wanted to study the effect of noise or our simulated, noiseless ellipticity samples.
Measurement uncertainties depend primarily on pixel noise and therefore vary with image

size and brightness. This means that errors on the ellipticities are not drawn from a single
distribution. To mimic the effect of a skewed composite error distribution for our simulated
samples, we randomly sampled the CFHTLenS weight w.

Miller et al. (2013) calculated an approximately inverse-variance weight using the width
of the ellipticity likelihood surface by

w =

[
σ2

ee2
max

e2
max + 2σ2

e
+ σ2

pop

]−1

, (4.22)

where σ2
e is the variance in ellipticity of the likelihood surface, σ2

pop is the ellipticity variance
of the galaxy population, and emax is a maximum ellipticity, to reflect a finite edge-on disk
thickness.

Using emax = 0.804 from Miller et al. (2013) and refining σ2
pop ≈ 0.242 using the

CFHTLenS catalog itself12, we obtained a distribution in ellipticity variance σ2
e for each

w. From this, we produced noise by assuming a Gaussian distribution with the ellipticity as
mean and σ2

e as variance.

Estimation of errors

To assess errors on bias and efficiency from our simulations, we simply divided our sim-
ulations randomly in smaller subsets and determine the statistical variations, assuming t-
distributions. While this approach may seem to lack finesse compared to a full bootstrap, the
significance of our results is high enough for a proof of concept.

12Miller et al. (2013) cite σ2
pop = 0.255 as prior, but this would lead to a negative σ2

e for the maximum weight in
the CFHTLenS catalog.



Hoofdstuk 4: Optimal statistics for weak shear 87

Figure 4.9: Ellipticity and axis ratio distributions for CFHTLenS blue (left), red (right). Top: a 2D
histogram of ellipticities. Note that the ring-like feature at e ≈ 0.8 is due to noisy outliers forced to
a maximum e by the shape measurement pipeline, but see also Figure 4.8. Middle: histogram of the
absolute ellipticity |e|. Bottom: histogram of the ellipse axis ratio q.

4.5 Results

4.5.1 Central value estimation
For each sample type, we produced 104 random samples of 100 ellipticities, which we dis-
torted by an absolute reduced shear of g = 0.2, and determined relative efficiencies and
possible biases. We then assessed the effect of varying the shear and the sample size.

Asymmetry and bias

Ideally, an estimator should be unbiased in the absence of noise. For the mean, this is the case
(Seitz & Schneider 1997), but since the effect of shear on intrinsic ellipticities in non-linear,
the resulting, observed ellipticity distribution P(ẽ) is asymmetric, or skewed, which can lead
to mean-biases for various estimators.

In Figure 4.10, we show this effect on the CHP estimator for g = 0.3 in two directions.
The distribution of the CHP estimator is clearly skewed, as shown by the convex hulls plotted,
when the coverage within the current hull is equal to approximately13 38.3%, 68.3%, 86.6%,

13CHP is a discrete and not a continuous process, but this effect is negligible for 104 estimates.
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and 95.4%. We note that this leads to a mean-biasedness, according to definition, but the
center of the estimator distribution P(êCHP) seems significantly less biased. In other words,
the CHP estimator seems ‘CHP-unbiased’.

A solution to this skewness in the estimator distribution, in the absence of noise, is it-
eratively improving estimates by correcting the observed ellipticities P(ẽ) by the estimated
shear, using Equation 4.5, and then determining the updated residuals. We call this process
of iteratively correcting the sample by the current estimate ‘de-shearing’ (or ‘de-g’). Figure
4.10 shows how this symmetrized the estimator distribution P(ê), and slightly improved the
efficiency as well (see section 4.5.1). The latter seemed to be the case even for the mean êµ
as estimator, but the difference was not statistically significant.

Figure 4.10: The skewed êCHP distribution as an example of the effect of asymmetry in a sheared
ellipticity distribution. Plotted are the estimation biases ∆e for 105 simulation runs, shown as a density
in grayscale. Over-plotted are the convex hulls at approximately 38.3%, 68.3%, 86.6%, and 95.4%
coverage. The mean of the distribution is shown as a white plus. Top: estimation biases ∆eCHP for
samples with an underlying shear of g = −0.21 + 0.21i (left) and g = 0.3 (right). Note that these
estimator distributions are effectively mean-biased, because they are skewed, but still centered around
∆e = 0, as indicated by the CHP estimation of the distributions. Bottom: ∆eCHP for the same samples,
after iteratively de-shearing the samples until the final CHP estimate vanishes. These iterations remove
asymptotic mean-bias and increase efficiency.

In presence of noise, the mean is a biased estimator (Melchior & Viola 2012). Given that
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in reality systematic noise is always present, a form of bias is unavoidable, since the noise
distribution is different14 from the (skewed) ellipticity distribution (See Figure 4.3). This
means that our method of de-shearing would introduce a noise bias for precisely the same
reason, since we would not properly correct the asymmetry in the distribution.

We compared the results for simulated projected ellipsoids with and without simulated
noise in Figure 4.11 to assess the effect. In the appendix, we quantified the observed multi-
plicative bias in the form

efit = (1 + m)ein , (4.23)

where e stands for e1,2, and summarize the results in Table 4.2.
Without de-shearing, only the mean is a mean-unbiased estimator. We noted that all

estimation methods could be made mean-unbiased in the noise-free case, when including de-
shearing, but showed a mean-bias in the presence of noise, as expected. For the biweight
estimator êBI, this was (within statistical significance) the same bias as for the mean. For the
LAD and CHP estimators êLAD and êCHP, the biases were significantly reduced, up to ∼ 30%,
to below percent level for realistic weak shear.

Figure 4.11: Estimator mean-bias as a function of input shear for realistic combinations of simulated
disk and elliptical samples, using projected ellipsoids. From left to right: all estimators without noise,
without noise after iteratively de-shearing the samples, all estimators with noise, and with noise and
after iteratively de-shearing the samples. Color coding: êµ (red), êLAD (blue), êCHP (green) and êBI

(yellow).

This decrease in bias can be explained by realizing that the observed, sheared ellipticity
distribution is skewed, but the location of the central peak of intrinsically round background
sources is still an unbiased estimator of the underlying shear (which can be deduced from
Equation 4.5 and Figure 4.3). It is the bias in determining the location of this peak that
introduces the bias in the shear estimate. Likewise, the effect of noise changes the observed
ellipticity distribution, but does not affect the location of that peak. Estimators that are more
sensitive to a central cusp or peak in the distribution and less to high ellipticities in the tail,
such as êLAD and êCHP, will therefore introduce a lower mean-bias.

We compared these results to the mean-bias in the upper panels of Figure 4.10 and the
observation that the central peak of the estimator distribution is in fact located at ∆e ≈ 0.
We found that the mean-bias arose due to the asymmetry in the estimator distribution and the
CHP-bias vanished, unaffected by noise.

14Intrinsically, the effect of noise is symmetric, but the effect on a sample of sheared ellipticities depends on the
shape measurement pipeline, as noted in Melchior & Viola (2012).
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Estimator efficiencies

In Tables 4.3, 4.4, and 4.5 in the appendix, we summarized the full results for the relative
efficiencies of each estimator. We applied de-shearing and note that this improves the effi-
ciencies marginally at a similar marginal cost to the bias. We determined relative efficiencies
for coverages of 25%, 50%, and 75%, corresponding to the MAD and the first and third quar-
tiles, and 38.3%, 68.3%, 86.6%, and 95.4%, which would correspond to steps of 0.5σ in case
of a Gaussian distribution with variance σ2.

In Figure 4.12, we plot these results for a few distributions, namely Gaussian, uniform
q, a combination of disk and elliptical projections and the conservative CFHTLenS catalog
samples. We also plot the results for the samples with added noise and the full CFHTLenS
samples.

Figure 4.12: Relative efficiencies each estimator plotted at different coverages. From left to right:
Relative efficiencies in case of a Gaussian P(e) distribution, the CFHTLenS catalog P(e) distribution, a
combination of disk and elliptical distributions using projected ellipsoids, and a uniform q distribution.
Color coding: relative efficiencies for êLAD (blue), êBI (yellow), and êCHP (green). Solid lines: simulated
samples without noise or using the CFHTLenS conservative subset. Dashed lines: including noise or
using the complete CFHTLenS set.

Not all estimators reached asymptotic normality. Especially CHP converged slower to-
ward normality in the tails of the distribution, that is, at higher coverage. For LAD, this is
noticeable mostly for the uniform q distribution.

The biweight is the most robust, as its relative efficiency doesn’t vary much across dis-
tributions. The biweight relative efficiency is however quite low, which means that this esti-
mator offers little improvement. Even when P(e) follows a Gaussian distribution, ηBI is not
significantly better or worse than the traditional mean.

Our results show that estimator efficiency is independent of input shear. This is the case,
when we define the individual estimate biases similarly to the residuals, as noted in Section
4.3.1, that is, not as the difference ê − g, but as the extra shear needed over the input shear g
to reach this difference, as determined by Equation 4.5:

∆e =
ê − g

1 − g∗ê
, (4.24)

with g∗ the complex conjugate of the input shear g of the simulations. Using that definition,
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this independence is demonstrated Figure 4.13.

Figure 4.13: Efficiency for an arbitrary estimator and sample type versus input shear, ranging from
g = 0.05 (left) to g = 0.35. Upper: simple difference ê− g between estimates and input shear, with s68.3

over-plotted. Lower: ∆e, as defined by Equation 4.24, with s68.3 over-plotted.

As an aside: since the mean of the CHP estimator is displaced from the center, this
necessarily increases the distribution scale. A more proper way to compare the scale with
symmetric distributions would be comparing the surface within the convex hull at a certain
coverage, as s2 is a measure of the (circular) surface around ê inside that scale. In this sense,
efficiency is a figure of merit. We have not done so in this paper, which means the ηCHP are
slightly underestimated, but not significantly.

In Figure 4.14, we show the results for different samples sizes. In Table 4.6 in the ap-
pendix, we summarize the quantitative results. In the limit of very small sample sizes, the
difference between the various estimators is expected to vanish. We note that a potential
improvement over the mean estimator remains even for a sample size of N = 10.

Figure 4.14: Relative efficiencies η68.3 plotted against sample sizes. From left to right: Relative effi-
ciencies in case of a Gaussian P(e) distribution, the CFHTLenS catalog P(e) distribution, a combination
of disk and elliptical distributions using projected ellipsoids, and a uniform q distribution. Color cod-
ing: relative efficiencies for êLAD (blue), êBI (yellow), and êCHP (green). Solid lines: simulated samples
without noise or using the CFHTLenS conservative subset. Dashed lines: including noise or using the
complete CFHTLenS set.
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4.5.2 Fourier mode fitting

For samples of a combination of disk and elliptical distributions using projected ellipsoids,
we produced 103 random square fields with 103 simulated ellipticities. For comparison, the
average number of selected sources in a CFHTLenS field is roughly 2.5 · 104, ranging from
9525 to 37767, or 5.3 · 103, ranging from 2111 to 9525 for the more conservative sample.

Using Equation 4.5, we distorted these intrinsic ellipticities by the total shear pattern of
one or more full modes (as defined in Equation 4.14), then applied simulated measurement
noise (as described in Section 4.4.3) as a final step.

We fitted amplitudes per individual wave using LSQ, LAD and CHP, and per mode using
LSQ and LAD by simultaneously fitting all four amplitudes. We then determined relative
efficiencies and possible biases of the recovered amplitudes in the same way as in Section
4.5.1.

In Figure 4.15, we show the fitted shear field for a single realization, using in this case
104 simulated ellipticities. We fitted 16 different modes individually, using LSQ and LAD,
and 64 individual amplitudes using LSQ, LAD, and CHP, and found the amplitude residuals,(
O

(
10−3

))
, to be two orders of magnitude less than the input values, which were constrained

to g ≤ 0.25 for peak values at positive interference. Residuals in |e| for this realization varied
between ±0.075 for LSQ,±0.066 for LAD and ±0.14 for CHP.

Figure 4.15: Shear field residuals when fitting 16 different modes, using simulated projected ellipsoids
as intrinsic shapes, and including additional Gaussian noise. From left to right: input shear, LSQ fit and
residuals, LAD fit and residuals, CHP it and residuals. Upper and lower row show e1 and e2 respectively.
The color scale is the same in all plots for comparison and ranges between −0.247 ≤ e1,2 ≤ 0.247.
Residuals for this realization vary between ±0.075,±0.066 and ±0.14, respectively.

Bias and efficiency

The results from Sections 4.5.1 and 4.5.1 carry over to estimates of Fourier amplitudes for
LSQ and LAD. We found fitted values with standard deviations of the order of 10−3 for
individual amplitudes. In Figure 4.16, we show the consistency of the fitted values.

Over plotted in Figure 4.16 are the best-fitting mean-bias, defined similar to Equation
4.23 as

aest = (1 + m)ain , (4.25)
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Figure 4.16: Consistency of the estimated Fourier amplitudes as defined in Equation 4.14. Plotted
are the input amplitudes amn, bmn, cmn, dmn versus their estimates (Section 4.3.3) for LSQ (left), LAD
(middle) AND CHP (right). Top row: only simulated intrinsic shapes based on projected ellipsoids.
Bottom row: the same, with added noise. Over plotted are the best-fitting mean-bias, as defined in
Equation 4.25.

where a stands for amn, bmn, cmn, and dmn as defined in Equation 4.14. The uncertainties are
too small to be visible. In Table 4.7 in the appendix, we give the quantitative results.

Similar to the results shown in Figure 4.11, LSQ underestimates Fourier amplitudes by a
few percent in the presence of noise. For LAD, we found an improvement on bias by ∼ 20%
in the presence of noise, when iteratively de-shearing the sample. Likewise, fitting for LAD
without de-shearing slightly overestimated the amplitudes, again comparable to Figure 4.11.

We note that in this case, adding noise did not seem to have a significant effect when
fitting per mode. In most cases, we did notice a significant increase in bias when fitting per
single amplitude. We did not see a change in bias between LSQ per mode and per amplitude.

We also found a slightly higher relative efficiency of η68.3 = 1.09 ± 0.07 for LSQ and
η68.3 = 1.47±0.09 for LAD, when fitting per mode, with or without added noise. It is not sur-
prising that a model with four parameters (amplitudes) fits the estimates better than a model
with one parameter, but the difference of this effect between LSQ and LAD is noteworthy.

Since CHP doesn’t fit a model to the data, but rather orders the (e1, e2) data points, there
is no straightforward way to fit four amplitudes simultaneously with the necessary weighting
(Section 4.3.2). We have not explored this option further in this paper.

The CHP estimator performs consistently, that is, convergent around the input values, but
with a significant lower efficiency than for central value estimation of a cloud of (e1, e2) data
points (Section 4.5.1). This is to be expected, since CHP is particularly sensitive to a (central)
cusp in the distribution of data points. By shearing the intrinsic ellipticities by a model that
varies over the field of view, as shown in Figure 4.6, this peak will be smeared out, decreasing
the effectiveness of CHP.

In conclusion, CHP is consistently the most sensitive to the central cuspiness of a dis-
tribution. The results of this section do serve as a proof of concept for applying alternative
statistics to an observed field of weak shear measurements.
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4.6 Conclusions and summary

4.6.1 Optimal estimators

Our main conclusion is that to evaluate a statistical estimator, one must be willing to look
beyond the canonical terms of mean-bias and the Gaussian variance as efficiency. We have
shown that these commonly used meta-analysis instruments do not always properly reflect
how well weak shear estimator values are constrained around the true underlying shear values.

By discussing the statistical definitions and observing the behavior of estimators for var-
ious ellipticity distributions, we have proposed ways of comparing various estimators moti-
vated by statistical theory. The conclusions of that comparison are as follows:

Since the central peak of the intrinsic ellipticity distribution P(e) is an unbiased tracer
of the underlying shear, we find that the LAD and CHP estimators are less biased and more
efficient than the standard mean.

When iteratively de-shearing the ellipticity sample by the estimated shear, the LAD es-
timator can reach a sub-percent bias for typical weak shear values, including noise. LAD is
generally the most efficient of all estimators considered, potentially reducing uncertainties by
more than 50% for samples simulated using a model of projected triaxial ellipsoids.

The CHP estimator is in terms of its mean-bias less affected by noise, as compared to
the mean and, to a lesser extend, LAD. In fact, since the estimator distribution P(ê) is not
symmetric, the actual center of that distribution, as opposed to the mean of that distribution,
is unbiased in the presence of noise, within statistical significance. This makes CHP an im-
portant consideration, but it is less straightforward for adaptation for regression and requires
careful assessment of uncertainties. Furthermore, CHP is computationally more demanding.
In the presence of Gaussian noise, CHP is slightly less efficient than the mean (Figure 4.12,
panels 3 and 4), but defining efficiency in terms of a figure of merit can reduce this drawback
compared to the gain in bias, as proposed in Section 4.5.1.

4.6.2 Direct Fourier mode fitting

Applying different statistics to fitting individual Fourier modes to the shear field directly, we
found results consistent with our previous conclusions.

We have shown that the Fourier amplitudes can be recovered with sub-percent accuracy
and a minimal bias, which is an important proof of concept. Since the periodic variations in
underlying shear effectively smooth the central peak of the intrinsic ellipticity distribution,
the gain in efficiency is slightly less for LAD and significantly less for CHP. It is possible
that an alternative to our weighting scheme for FMF with CHP could improve results. At this
point, the method of CHP seems more applicable to samples of expected (roughly) constant
shear, for example when measuring tangential shear around a gravitational lens candidate in
bins of distance.

We have also shown that the shear field can be recovered reliably, with residuals an the
order of magnitude less than the variations of the shear over the field of view for LSQ and
LAD, using 103 sources, which is conservative compared to a typical single CFHTLenS field.
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4.6.3 Future considerations and possible applications
We have discussed alternative statistics for inference of shear from samples of background
sources with various intrinsic ellipticity distributions, proposing methods that could improve
biases and uncertainties arising from the shape noise. It is important to consider our results
within the broader context of other sources of systematics, as mentioned in our introduction.

Firstly, our results for shape noise assume trustworthy shape measurements, not only per
source, but also considering the effect of systematics in the shape measurement pipelines
on the reproduced ellipticity distribution as a whole: the recovery of a central peak, the
distribution of outliers, among others. Examples are the effect of constraining ellipticities to
a certain ‘physical’ maximum (e.g., emax = 0.804 for lensfit, Miller et al. 2013), as we see
in Figure 4.2, or conversely, the unphysical outliers with |e| > 1.0 arising from dividing two
noisy quantities (often when correcting for the point spread function, or PSF), affecting the
tails of the distribution. Any features in the recovered shape distribution could affect bias
and efficiency of the statistic used. Optimizing statistics will place more stringent demands
on shape measurements than performing excellent ‘on average’. Even methods that avoid
individual shape measurements (Bernstein & Armstrong 2014), an ensemble inferred reduced
shear could improve by considering the intrinsic shape distribution. Secondly, even with an
accurately measured shape distribution, there will remain sources of systematic error in other
steps of a cosmological analysis, as noted in our introduction. These effects still form a
necessary part in a weak lensing analysis, but leave our statistical conclusions unaffected.

As survey sizes and image qualities increase, so will the demands on constraining sys-
tematic effects to a sub-dominant level, as described in for example Kuijken et al. (2015)
and Mandelbaum et al. (2018) for the KiDS DR2 and HSC DR1, respectively. At the same
time, it will be interesting to see measured ellipticity distributions converge as more sources
are observed with higher signal-to-noise and measured with higher fidelity, due to increased
depth of imaging, image quality and PSF control.

For now, we have given a proof of concept for alternative statistics in two cases: a sam-
ple of ellipticities with one underlying shear and the recovery of individual Fourier modes
of the shear variation over a field of view. The first part has important applications when
inferring a shear profile around lenses, both in recovering an accurate, less biased estimate
and smaller error bars or confidence intervals. For the second part: since the amplitudes are
well constrained by fitting individual Fourier modes, this provides a possible method toward
estimation of the power spectrum. Furthermore, the shear field can be recovered in terms of
its Fourier amplitudes, providing a powerful analytic model for mass reconstruction, without
the need for smoothed gridding and incorporating variations in background source densities
and estimated measurement uncertainties.
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4.A Bias estimations
In Table 4.2 are given the mean-bias and CHP-bias for each estimator, with and without
de-shearing. This multiplicative bias m is defined by Equation 4.23 as efit = (1 + m)ein.

4.B Efficiency estimations
In Tables 4.3, 4.4, and 4.5, we summarize the full results for the relative efficiencies of each
estimator. We determine relative efficiencies for coverages of 25%, 50%, and 75%, corre-
sponding to the MAD and the first and third quartiles, and 38.3%, 68.3%, 86.6%, and 95.4%,
which would correspond to steps of 0.5σ in case of a Gaussian distribution with variance σ2.

For easy reference, we also indicate how much the scale of the estimator distribution
would improve, in percentages of the scale of the distribution of the mean estimator,

∆sp =
sê,p

sµ
− 1 (in %) (4.26)

Since a higher efficiency means a smaller scale and therefore a more ‘trustworthy’ estimate,
this is an intuitive, albeit rough indication of the change in error bars.

4.C Estimations from Fourier mode fitting
In Table 4.7 are given the mean-bias and efficiencies of the LSQ estimator, per mode and
per individual amplitude, LAD estimator with and without de-shearing, per mode and per
individual amplitude, and the CHP estimator, per individual amplitude. The mean-bias is
again given in terms of a multiplicative component m as defined in Equation 4.25.
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Table 4.2: Results for bias estimations for each estimator, with and without de-shearing. We have used
simulated projected ellipsoids as intrinsic ellipticities, with and without added noise. Estimation bias is
given in terms of a multiplicative component m as defined in Equation 4.23. Numbers in parentheses
reflect the standard uncertainty in the last digit.

Estim. mµ mCHP

Simulated ellipticities

Mean -0.0003(4) -0.0007(7)

de-g 0.0006(6) 0.0004(4)

LAD 0.0172(4) 0.0154(5)

de-g -0.0000(2) -0.0005(2)

CHP 0.0097(2) 0.0052(5)

de-g 0.0000(2) 0.0001(2)

BI 0.0426(7) 0.0421(9)

de-g -0.0002(6) 0.0002(5)

Added noise

Mean -0.0404(7) -0.040(1)

de-g -0.045(2) -0.045(2)

LAD 0.0114(6) 0.011(1)

de-g -0.0308(8) -0.031(1)

CHP 0.0053(5) 0.004(1)

de-g -0.030(1) -0.028(2)

BI 0.0066(8) 0.007(1)

de-g -0.040(1) -0.040(2)
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Table 4.3: Results for scales of fixed coverage for LAD. For each sample distribution, the relative
efficiencies η are given first, and the (more intuitive) relative change in estimator distribution scale is
given second, in percentages of the distribution scale of the mean. Numbers in parentheses reflect the
standard uncertainty in the last digit.

Distribution η25 η38.3 η50 η68.3 η75 η86.6 η95.4

∆s25(%) ∆s38.3(%) ∆s50(%) ∆s68.3(%) ∆s75(%) ∆s86.6(%) ∆s95.4(%)
Simulated ellipticities

Gaussian 0.79(3) 0.79(3) 0.81(3) 0.83(2) 0.84(3) 0.81(2) 0.83(3)
+12(2) +12(2) +11(2) +9(1) +9(2) +11(1) +10(2)

Uniform q 7.2(4) 6.1(3) 5.4(1) 4.55(9) 4.3(1) 3.69(9) 3.22(6)
-63(1) -59.4(8) -56.9(5) -53.1(5) -51.7(7) -48.0(6) -44.3(5)

Elliptical 2.7(1) 2.5(1) 2.4(1) 2.26(8) 2.20(9) 2.07(8) 1.88(7)
-39(2) -36(2) -35(1) -34(1) -33(1) -31(1) -27(1)

Disk 6.3(3) 5.8(2) 5.5(2) 5.1(2) 4.9(1) 4.7(1) 4.3(1)
-60.1(9) -58.5(8) -57.3(6) -55.6(7) -54.7(7) -53.9(7) -52.0(7)

Combined 5.4(2) 5.0(3) 4.9(2) 4.6(2) 4.4(1) 4.1(1) 4.0(2)
-57.2(8) -55(1) -55(1) -53.6(8) -52.2(7) -50.8(7) -50(1)

Added noise
Uniform q 1.37(7) 1.38(5) 1.37(5) 1.38(3) 1.37(3) 1.33(3) 1.29(4)

-15(2) -15(2) -14(2) -15(1) -14(1) -13(1) -12(1)
Elliptical 1.19(6) 1.18(5) 1.20(6) 1.17(3) 1.18(4) 1.19(3) 1.16(4)

-8(2) -8(2) -9(2) -8(1) -8(1) -8(1) -7(2)
Disk 1.48(8) 1.49(7) 1.54(7) 1.55(6) 1.57(5) 1.59(5) 1.52(4)

-18(2) -18(2) -19(2) -20(1) -20(1) -21(1) -19(1)
Combined 1.55(5) 1.53(6) 1.51(8) 1.53(5) 1.51(5) 1.48(6) 1.46(5)

-20(1) -19(2) -19(2) -19(1) -19(1) -18(20 -17(1)
Full CFHTLenS data

All 1.17(6) 1.19(4) 1.19(3) 1.21(3) 1.20(2) 1.20(3) 1.12(3)
-8(3) -8(1) -8(1) -9(1) -8.6(9) -9(1) -6(1)

Red 1.32(7) 1.33(6) 1.35(5) 1.26(4) 1.24(5) 1.19(5) 1.19(8)
-13(2) -13(2) -14(1) -11(1) -10(2) -8(2) -8(3)

Blue 1.28(4) 1.24(5) 1.24(4) 1.20(3) 1.18(3) 1.19(5) 1.19(8)
-12(1) -10(2) -10(1) -9(1) -8(1) -8(2) -8(3)

Sbc 1.23(5) 1.19(3) 1.19(5) 1.18(2) 1.17(3) 1.18(3) 1.13(6)
-10(2) -8(1) -9(2) -7.8(6) -7.4(9) -8(1) -6(2)

Scd 1.21(4) 1.20(4) 1.21(4) 1.18(4) 1.16(3) 1.19(6) 1.12(7)
-9(2) -9(2) -9(2) -8(1) -7(1) -8(2) -6(3)

Conservative selection of CFHTLenS data
All 1.82(7) 1.77(6) 1.72(4) 1.67(5) 1.70(3) 1.65(2) 1.67(6)

-26(1) -25(1) -24(1) -23(1) -23.3(7) -22.2(4) -23(1)
Red 1.8(1) 1.68(9) 1.66(7) 1.64(6) 1.64(6) 1.66(6) 1.58(6)

-26(3) -23(2) -22(2) -22(1) -22(1) -22(1) -21(2)
Blue 1.73(4) 1.63(5) 1.62(5) 1.65(4) 1.64(6) 1.64(5) 1.61(9)

-24.0(8) -22(1) -21(1) -22(1) -22(1) -22(1) -21(2)
Sbc 1.63(8) 1.6(1) 1.59(6) 1.55(4) 1.52(4) 1.49(4) 1.47(7)

-22(2) -22(2) -21(2) -20(1) -19(1) -18(1) -18(2)
Scd 1.8(1) 1.75(9) 1.70(6) 1.67(4) 1.6(4) 1.65(3) 1.55(5)

-25(3) -24(2) -23(1) -22.6(9) -21.9(9) -22.1(7) -20(1)
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Table 4.4: Results for scales of fixed coverage for the biweight. For each sample distribution, the
relative efficiencies η are given first, and the (more intuitive) relative change in estimator distribution
scale is given second, in percentages of the distribution scale of the mean. Numbers in parentheses
reflect the standard uncertainty in the last digit.

Distribution η25 η38.3 η50 η68.3 η75 η86.6 η95.4

∆s25(%) ∆s38.3(%) ∆s50(%) ∆s68.3(%) ∆s75(%) ∆s86.6(%) ∆s95.4(%)
Simulated ellipticities

Gaussian 0.99(6) 1.02(6) 1.00(4) 1.03(4) 1.02(5) 1.03(4) 1.05(4)
+0(3) -1(3) -0(2) -1(2) -1(2) -1(2) -2(2)

Uniform q 1.2(1) 1.16(5) 1.19(2) 1.14(3) 1.12(2) 1.14(5) 1.17(6)
-10(3) -7(2) -8.2(8) -6(1) -6(1) -6(2) -7(2)

Elliptical 1.4(2) 1.3(1) 1.31(8) 1.31(8) 1.30(6) 1.34(9) 1.32(3)
-14(5) -13(2) -13(3) -13(2) -12(2) -14(3) -13(1)

Disk 1.6(1) 1.60(7) 1.52(6) 1.49(6) 1.49(6) 1.49(5) 1.46(4)
-20(3) -21(2) -19(2) -18(2) -18(2) -18(1) -17(1)

Combined 1.54(8) 1.5(1) 1.5(1) 1.46(5) 1.47(6) 1.47(5) 1.45(8)
-19(2) -19(3) -18(3) -17(2) -17(2) -17(1) -17(2)

Added noise
Uniform q 1.09(6) 1.11(5) 1.11(7) 1.09(4) 1.09(5) 1.09(6) 1.10(4)

-4(2) -5(2) -5(3) -4(2) -4(2) -4(2) -5(2)
Elliptical 1.23(8) 1.26(9) 1.23(9) 1.248) 1.23(8) 1.24(6) 1.22(4)

-10(3) -11(3) -10(3) -10(3) -10(3) -10(2) -9(2)
Disk 1.25(6) 1.24(9) 1.24(7) 1.23(4) 1.23(4) 1.23(6) 1.19(4)

-10(2) -10(3) -10(2) -10(1) -10(2) -10(2) -8(1)
Combined 1.23(7) 1.25(6) 1.24(7) 1.26(6) 1.26(7) 1.2397) 1.22(6)

-10(2) -10(2) -10(3) -11(2) -11(2) -10(3) -9(2)
Full CFHTLenS data

All 1.06(7) 1.06(4) 1.05(3) 1.10(3) 1.09(3) 1.08(3) 1.06(2)
-3(3) -3(2) -2(2) -5(1) -4(2) -4(1) -3.1(8)

Red 1.1(1) 1.10(8) 1.09(5) 1.08(5) 1.08(6) 1.08(6) 1.1(1)
-5(6) -5(3) -4(2) -4(2) -4(3) -4(3) -4(5)

Blue 1.09(3) 1.06(4) 1.05(7) 1.08(5) 1.10(5) 1.10(7) 1.07(8)
-4(1) -3(2) -3(3) -4(2) -5(2) -5(3) -3(4)

Sbc 1.12(9) 1.08(7) 1.07(6) 1.06(3) 1.07(4) 1.06(4) 1.03(5)
-5(4) -4(3) -3(3) -3(1) -3(2) -3(2) -2(2)

Scd 1.02(4) 1.03(4) 1.05(4) 1.05(4) 1.04(5) 1.06(8) 1.02(9)
-1(2) -1(2) -3(2) -2(2) -2(2) -3(4) -1(4)

Conservative selection of CFHTLenS data
All 1.22(6) 1.23(3) 1.21(4) 1.19(5) 1.22(5) 1.22(3) 1.21(7)

-10(2) -10(1) -9(2) -8(2) -9(2) -9(1) -9(3)
Red 1.12(5) 1.10(5) 1.12(5) 1.11(4) 1.11(4) 1.15(6) 1.14(50

-6(2) -5(2) -5(2) -5(2) -5(2) -7(2) -6(2)
Blue 1.27(8) 1.22(7) 1.23(8) 1.23(7) 1.23(5) 1.23(5) 1.21(6)

-11(3) -9(3) -10(3) -10(3) -10(2) -10(2) -9(2)
Sbc 1.14(6) 1.2(1) 1.14(7) 1.13(3) 1.13(4) 1.15(7) 1.15(4)

-6(2) -7(5) -6(3) -6(1) -6(2) -7(3) -7(1)
Scd 1.3(1) 1.3(1) 1.30(9) 1.28(8) 1.25(8) 1.26(6) 1.28(4)

-14(4) -14(4) -12(3) -12(3) -10(3) -11(2) -11(1)
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Table 4.5: Results for scales of fixed coverage for CHP. For each sample distribution, the relative
efficiencies η are given first, and the (more intuitive) relative change in estimator distribution scale is
given second, in percentages of the distribution scale of the mean. Numbers in parentheses reflect the
standard uncertainty in the last digit.

Distribution η25 η38.3 η50 η68.3 η75 η86.6 η95.4

∆s25(%) ∆s38.3(%) ∆s50(%) ∆s68.3(%) ∆s75(%) ∆s86.6(%) ∆s95.4(%)
Simulated ellipticities

Gaussian 0.38(3) 0.38(1) 0.38(1) 0.39(2) 0.38(1) 0.37(1) 0.38(2)
+62(6) +62(3) +63(3) +61(3) +63(2) +63(2) +63(5)

Uniform q 15(2) 11.1(9) 8.9(5) 6.5(5) 5.6(4) 4.4(3) 3.3(3)
-74(2) -70(1) -66.6(9) -61(1) -58(1) -53(1) -45(2)

Elliptical 2.3(2) 2.03(8) 1.80(7) 1.58(5) 1.51(6) 1.31(8) 1.13(8)
-33(2) -30(1) -25(1) -21(1) -19(2) -13(3) -6(3)

Disk 6.8(7) 6.0(5) 5.4(2) 4.6(1) 4.3(1) 3.8(2) 3.2(2)
-62(2) -59(2) -57.1(9) -53.5(6) -51.6(8) -49(1) -44(2)

Combined 5.8(3) 5.0(1) 4.7(2) 4.1(1) 3.8(1) 3.4(1) 2.7(2)
-59(1) -55.4(6) -53.8(8) -50.4(7) -48.8(9) -45(1) -39(2)

Added noise
Uniform q 0.85(4) 0.84(3) 0.86(4) 0.85(4) 0.84(3) 0.80(3) 0.77(40

+7(2) +9(2) +8(3) +8(2) +9(2) +12(2) +14(3)
Elliptical 0.65(5) 0.65(6) 0.64(4) 0.66(3) 0.64(3) 0.64(3) 0.64(4)

+24(5) +24(6) +25(4) +24(3) +25(3) +25(3) +25(4)
Disk 0.88(7) 0.89(6) 0.88(4) 0.90(3) 0.90(3) 0.88(4) 0.87(6)

+7(4) +6(4) +6(3) +6(2) +5(1) +6(2) +7(4)
Combined 0.91(6) 0.92(6) 0.89(5) 0.91(3) 0.89(4) 0.88(5) 0.86(4)

+5(3) +4(4) +6(3) +5(2) +6(2) +6(3) +8(2)
Full CFHTLenS data

All 0.75(4) 0.76(3) 0.77(2) 0.76(2) 0.77(2) 0.75(3) 0.71(2)
+16(3) +14(2) +14(2) +15(1) +14(1) +16(2) +19(1)

Red 0.81(7) 0.84(7) 0.84(4) 0.77(4) 0.76(5) 0.72(4) 0.72(4)
+11(5) +9(4) +9(2) +14(3) +15(4) +18(3) +18(3)

Blue 0.81(3) 0.79(3) 0.77(3) 0.75(4) 0.76(3) 0.73(3) 0.68(6)
+11(2) +13(2) +14(2) +15(3) +14(3) +17(2) +21(5)

Sbc 0.80(4) 0.78(3) 0.77(3) 0.76(3) 0.74(2) 0.71(3) 0.68(4)
+12(3) +14(2) +14(2) +15(2) +16(2) +18(2) +21(4)

Scd 0.79(5) 0.75(3) 0.74(2) 0.73(3) 0.72(4) 0.72(3) 0.67(5)
+12(3) +15(2) +16(2) +17(2) +18(3) +18(3) +22(5)

Conservative selection of CFHTLenS data
All 1.18(5) 1.14(4) 1.08(5) 1.00(5) 0.99(4) 0.96(4) 0.89(5)

-8(2) -6(1) -4(2) 0(3) 0(2) +2(2) +6(3)
Red 1.3(1) 1.21(8) 1.15(5) 1.05(5) 1.02(5) 0.99(5) 0.89(8)

-13(3) -9(3) -7(2) -2(2) -1(2) 0(2) +6(5)
Blue 1.09(5) 1.02(6) 1.03(7) 0.99(5) 0.96(5) 0.97(5) 0.93(9)

-4(2) -1(3) -1(3) +1(3) +2(3) +2(3) +4(5)
Sbc 1.1(1) 1.1(1) 1.0(1) 0.98(5) 0.95(5) 0.91(4) 0.88(4)

-4(5) -3(5) -1(5) +1(2) +3(3) +5(2) +7(2)
Scd 1.11(9) 1.11(4) 1.06(6) 1.00(6) 0.97(5) 0.94(5) 0.85(6)

-5(4) -5(2) -3(3) 0(3) +1(3) +3(2) +8(3)
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Table 4.6: Results for η68.3 for different sample sizes. Numbers in parentheses reflect the standard
uncertainty in the last digit.

Distribution Estimator N = 10 N = 22 N = 46 N = 100 N = 215 N = 464

Simulated ellipticities

Gaussian LAD 0.80(3) 0.76(2) 0.80(3) 0.83(2) 0.79(3) 0.78(3)

BI 1.01(3) 1.06(3) 1.03(2) 1.03(4) 1.03(5) 1.07(5)

CHP 0.71(2) 0.50(1) 0.44(1) 0.39(2) 0.33(2) 0.29(1)

Uniform q LAD 1.84(6) 2.78(5) 3.6(1) 4.55(9) 5.8(2) 6.6(4)

BI 1.16(9) 1.14(4) 1.20(3) 1.14(3) 1.17(4) 1.18(9)

CHP 1.30(5) 2.19(7) 3.6(2) 6.5(5) 12.3(5) 22(2)

Combined LAD 2.94(7) 3.5(2) 4.2(1) 4.6(2) 4.9(1) 5.1(2)

BI 1.47(7) 1.46(7) 1.45(4) 1.46(5) 1.56(6) 1.53(8)

CHP 2.03(9) 2.8(2) 3.6(2) 4.1(1) 5.1(2) 6.0(4)

Added noise

Uniform q LAD 1.08(3) 1.27(7) 1.32(6) 1.38(3) 1.41(4) 1.33(4)

BI 1.09(3) 1.08(7) 1.15(4) 1.09(4) 1.08(4) 1.14(8)

CHP 0.9(8) 0.93(6) 0.93(3) 0.85(4) 0.74(4) 0.66(4)

Combined LAD 1.28(5) 1.42(3) 1.53(5) 1.53(5) 1.51(6) 1.56(5)

BI 1.24(4) 1.23(5) 1.26(3) 1.26(6) 1.25(7) 1.24(8)

CHP 0.98(9) 1.04(4) 0.98(8) 0.91(3) 0.78(4) 0.70(4)

CFHTLenS data

All LAD 0.91(2) 1.11(5) 1.16(4) 1.21(3) 1.15(3) 1.21(5)

BI 1.05(2) 1.07(4) 1.10(6) 1.10(3) 1.08(3) 1.09(8)

CHP 0.77(4) 0.83(6) 0.82(4) 0.76(2) 0.66(2) 0.65(4)

Subset LAD 1.39(4) 1.59(6) 1.59(5) 1.67(5) 1.74(4) 1.80(4)

BI 1.17(3) 1.18(6) 1.22(5) 1.19(5) 1.21(6) 1.19(3)

CHP 1.07(4) 1.12(6) 1.04(3) 1.00(5) 0.99(4) 0.98(6)
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Table 4.7: Results for amplitude estimations for FMF, using different estimators (LSQ, LAD, CHP) and
models (per mode or per amplitude). Estimation bias is given in terms of a multiplicative component
m as defined in Equation 4.25. Efficiencies are determined relative to LSQ per individual amplitude.
Numbers in parentheses reflect the standard uncertainty in the last digit.

Estimator m η68.3

Simulated ellipticities

LSQ per mode 0.001(1) 1.14(6)

amplitude 0.000(1) N.A.

LAD per mode 0.0166(6) 4.6(3)

amplitude 0.046(1) 1.31(4)

de-g per mode 0.0006(6) 5.4(4)

amplitude 0.022(1) 1.61(5)

CHP per amplitude 0.043(2) 0.83(5)

Added noise

LSQ per mode -0.024(1) 1.09(7)

amplitude -0.023(2) N.A.

LAD per mode 0.014(1) 1.47(9)

amplitude 0.032(2) 0.98(7)

de-g per mode -0.018(3) 1.55(9)

amplitude -0.007(2) 1.14(8)

CHP per amplitude 0.015(2) 0.41(3)



5
AMICO galaxy clusters in

KiDS-DR3: The impact of estimator
statistics on the luminosity-mass

scaling relation

As modern-day precision cosmology aims for statistical uncertainties of the percent level or
lower, it becomes increasingly important to reconsider estimator assumptions at each step
of the process, along with their consequences on the statistical variability of the scientific
results.

We compare L1 regression statistics to the weighted mean, the canonical L2 method based
on Gaussian assumptions, to infer the weak gravitational shear signal from a catalog of back-
ground ellipticity measurements around a sample of clusters, which has been a standard step
in the processes of many recent analyses.

We use the shape measurements of background sources around 6925 AMICO clusters
detected in the KiDS third data release. We investigate the robustness of our results and the
dependence of uncertainties on the signal-to-noise ratios of the background source detections.
Using a halo model approach, we derive lensing masses from the estimated excess surface
density profiles.

The highly significant shear signal allows us to study the scaling relation between the
r-band cluster luminosity, L200, and the derived lensing mass, M200. We show the results of
the scaling relations derived in 13 bins in L200, with a tightly constrained power-law slope
of ∼ 1.24 ± 0.08. We observe a small, but significant, relative bias of a few percent in
the recovered excess surface density profiles between the two regression methods, which
translates to a 1σ difference in M200. The efficiency of L1 is at least that of the weighted
mean and increases with higher signal-to-noise shape measurements.

Our results indicate the relevance of optimizing the estimator for inferring the gravita-
tional shear from a distribution of background ellipticities. The interpretation of measured
relative biases can be gauged by deeper observations, and the increased computation times
remain feasible.

M. Smit, A. Dvornik, M. Radovich, K. Kuijken, M. Maturi, L. Moscardini, and M. Sereno
Astronomy & Astrophysics, Accepted for publication (2021)

103



104 Hoofdstuk 5: AMICO galaxy clusters in KiDS-450

5.1 Introduction
Statistics is an essential part of astronomy (Heck et al. 1985, Feigelson 1988, 2009, Feigelson
& Babu 2013). The field relies on inferring physical properties, which cannot be determined
directly, from observable quantities, which in turn need to be corrected for systematic effects
as well as instrumental and observational biases. The key question that always needs to be
answered when interpreting observations and results – before discussing how accurately these
results can be constrained – is what one is actually seeing.

Weak gravitational lensing, caused by the deflection of light rays by density variations
along the traveled path, has been a case in point for the last three decades. Gravitational
lensing is a convex focusing effect that can magnify and shear affected background sources.
The observed shapes and number counts can conversely yield information about these density
variations but need to be disentangled statistically from the unknown intrinsic properties of
background sources, such as distance, size (and luminosity), and shape.

The first detections of coherent alignments of galaxy shapes were observed in the back-
ground of clusters (Tyson et al. 1990), and subsequently in the emerging fields of galaxy-
galaxy lensing (where the lensing “structure” is itself an ensemble of lenses; Brainerd et al.
1996) and cosmic shear (the weak lensing induced by large-scale structure; Wittman et al.
2000, Bacon et al. 2000, Kaiser et al. 2000, Van Waerbeke et al. 2000). Since then, techniques
have progressed rapidly, and demands on accuracy have become increasingly stringent.

This is the second in a set of papers wherein we focus on the statistical aspects of infer-
ring the lensing signal from the intrinsic shapes and the estimated lensing geometry, which
depends on the distances between the observer, the moment of deflection, and the back-
ground sources. Assuming the cosmological principle, the intrinsic shapes of a sample1 of
background galaxies, including their orientation, are random, and the intrinsic galaxy shapes
should average out from a sufficiently large sample, leaving the weak lensing signal as a net
ellipticity. The common approach has been to take a weighted mean of galaxy ellipticities,
which has computational and analytical advantages and, most importantly, is an unbiased es-
timator of the shear in the absence of pixel noise in the galaxy images (Seitz & Schneider
1997).

In practice, however, there are many sources of noise and the mean is known to be bi-
ased, underestimating the underlying shear signal (Melchior & Viola 2012, Viola et al. 2014,
Sellentin et al. 2018, Mandelbaum 2018). The distribution of intrinsic galaxy shapes is well
known to be non-Gaussian (Lambas et al. 1992, Rodríguez & Padilla 2013) and, in fact,
centrally peaked. In Smit & Kuijken (2018, hereafter Paper I), we explored alternative esti-
mators besides the mean that could potentially be better suited for such a cuspy distribution.
It was found, using realistic simulated distributions and resampling of Canada-France-Hawaii
Lensing Survey (CFHTLenS) shape measurements (Heymans et al. 2012b), that L1 norm re-
gression, also known as Least Absolute Deviations (LAD), reduces bias from between ∼ −4%
and ∼ −4.5% to between ∼ +1% and ∼ −3%, while at the same time reducing uncertainty by
∼ 9% to ∼ 23%.

In this paper we extend this study by applying these statistics to a weak lensing analysis
of 6925 galaxy clusters in the Adaptive Matched Identifier of Clustered Objects (AMICO)
cluster catalog (Bellagamba et al. 2011, Radovich et al. 2017, Bellagamba et al. 2018, Maturi

1There are several considerations involved in the proper selection of such a sample, as explained in Sects. 5.2
and 5.3.
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et al. 2019, Bellagamba et al. 2019) of the third data release of the Kilo-Degree Survey (KiDS-
450; de Jong et al. 2017). As opposed to Paper I, in this case the true lensing signal (here
in the form of the excess surface density of the clusters) is unknown. We therefore study the
relative biases and uncertainties between LAD and the mean, and we compare results to our
findings in Paper I.

An important application is then to study the relation between the observable properties of
clusters and groups and the physical quantities derived from the lensing signal (i.e., the matter
distribution) to better our understanding of galaxy and cluster formation and cosmological
models (e.g., Kautsch et al. 2008, Leauthaud et al. 2010, Lesci et al. 2020). We calculate halo
masses from the obtained lensing signals and derive a scaling relation between the observed
r-band luminosity and the lensing mass, investigating the impact of estimator choice on the
resulting constraints.

The order of magnitude of this estimated bias in the weak lensing results can be dominant
compared to other sources of uncertainty in the process. Developments in the field have led
to current constraints of the multiplicative bias in shape measurements on the order of ∼ 1%
(Bernstein & Jarvis 2002, Hirata & Seljak 2003, Heymans et al. 2006, Massey et al. 2007,
Miller et al. 2007, Kitching et al. 2008, Bridle et al. 2010, Voigt & Bridle 2010, Bernstein
2010, Kitching et al. 2012, Kacprzak et al. 2012, Melchior & Viola 2012, Refregier et al.
2012, Heymans et al. 2012a, Mandelbaum et al. 2015, Viola et al. 2015, Fenech Conti et al.
2017). The uncertainty in the lensing geometry between the observer, lens, and background
sources, introduced by the estimation of the photometric redshift probability distributions,
can be a few percent (Hildebrandt et al. 2017, Bellagamba et al. 2019, and Appendix 5.A.1).
The broad category of selection biases, for example those introduced by intrinsic alignments,
contamination of the background sample by cluster member galaxies, blending, detection,
and subsequent selection effects, typically accumulate up to a few percent (Miyatake et al.
2015, van Uitert et al. 2017, Bellagamba et al. 2019) for cluster weak lensing. For instance,
estimations on background selection yield a foreground contamination on the order of 2%,
which can be partly corrected for, but does increase the uncertainty (Dvornik et al. 2017,
Bellagamba et al. 2019, and Appendix 5.A.2). In this study we investigate the usability of
background sources to radii smaller than in Bellagamba et al. (2019).

These demands on accuracy and precision become higher as the data yield, and there-
fore the statistical power of surveys, increases dramatically (Mandelbaum 2018), as achieved
by COSMOS2 (Leauthaud et al. 2007), CFHTLenS3 (Heymans et al. 2012b), RCSLenS4

(Hildebrandt et al. 2016), KiDS5 (de Jong et al. 2013), and DES6 (Dark Energy Survey Col-
laboration et al. 2016), and foreseen for future surveys such as LSST7 (Ivezić et al. 2019)
and Euclid8 (Laureijs et al. 2011). While these two future surveys will require constraints on
systematic uncertainty of order ≤ 2× 10−3 (Mandelbaum 2018), we show that, even for weak
lensing analyses in the last decade, the bias in shear inference can dominate other sources,
such as the aforementioned multiplicative shape measurement bias that is commonly cor-
rected for, as in Viola et al. (2015), Dvornik et al. (2017), and Bellagamba et al. (2019).

2http://cosmos.astro.caltech.edu/
3http://www.cfhtlens.org
4http://www.rcslens.org/
5http://kids.strw.leidenuniv.nl/
6http://www.darkenergysurvey.org/
7https://www.lsst.org/
8http://www.euclid-ec.org/
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Several other approaches have been made to address this, including analytic modeling of
the bias (e.g., Viola et al. 2014), weight corrections and priors (Bonnet & Mellier 1995, Van
Waerbeke et al. 2000, Bernstein & Jarvis 2002), or nulling techniques (Herbonnet et al. 2017).
The calculation of the main observable, the shapes of lensed background sources, itself relies
on statistical methods. These are based mainly on surface brightness moments (Kaiser et al.
1995, Rhodes et al. 2000) or model fitting (Kuijken 1999, Bernstein & Jarvis 2002, Hirata
& Seljak 2003, Refregier & Bacon 2003, Kuijken 2006, Miller et al. 2007, Kitching et al.
2008). This means the most common approaches are corrections on a statistic that remains
fundamentally skewed (Sellentin et al. 2018, Mandelbaum 2018).

Promising alternative approaches by Bernstein & Armstrong (2014) and Schneider et al.
(2015) do not reproduce individual background shapes, but directly determine the underlying
shear field from ensembles of background sources, reconsidering these steps in the chain
of statistical inference. While future lensing surveys will require innovative improvements,
these methods and their priors need to be gauged by deep observations of high signal-to-
noise, and it is of fundamental importance that these calibrations are well constrained and
do not suffer from even subtle systematic biases. In other words, the comparison of several
perspectives is paramount in determining what we actually see.

The remainder of this paper is organized as follows. We introduce the definitions of
galaxy shapes and the weak lensing formalism in Sect. 2 and relate these to our statistical
approach. Data, analysis methods, and selection criteria are described in Sect. 3, while Sect.
4 states our results and analysis. Section 5 gives a summary of our conclusions.

Throughout this paper we assume a Planck (Planck Collaboration et al. 2014) cosmology
with ΩM = 0.315, ΩΛ = 0.685, and H0 = 100.0 h km s−1 Mpc−1. All measurements are in
co-moving units, unless specifically noted otherwise, such as in Sect. 5.2.

5.2 Weak gravitational lensing statistics
We briefly review the principles of weak gravitational lensing and relate the central concepts
to our statistical approach, introducing the terminology and notation conventions used in this
paper. We refer the reader to excellent reviews, such as Bartelmann & Schneider (2001),
Schneider (2006), Hoekstra & Jain (2008), and Bartelmann & Maturi (2017), for more in-
depth approaches.

5.2.1 Principles of weak lensing

Rays of light are deflected by the curvature or space-time due to mass inhomogeneities along
their path. A mass overdensity acts as a convex lens on the light rays from distant sources
behind that lens to an observer. In this section, we use Dl to denote angular-diameter distances
from the observer to the lens, Dls from the lens to the background source, and Ds from the
observer to the background source (see Fig. 5.1), and in the remainder of this paper we
translate quantities to co-moving units where necessary.

For the purposes of this work, the extent of the lensing mass along the line of sight,
compared to the distances from the observer to the lens and from the lens to the background
source, can be considered negligible. In this so-called thin-lens approximation, the deflection
of light rays by a deflection angle, ~̂α, leads to an effective angular displacement (again, see
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Figure 5.1: Representation of a gravitational lens system, showing the displacement of a source at
position S (x, y) to an image at position I(x′, y′), where we take the origin of the source plane to be
collinear with the position of the lens, L, and the observer, O.

Fig. 5.1),

~α = −
Dls

Ds
~̂α , (5.1)

also called the reduced deflection angle, which relates the observed position, ~θ, of a distant
point source to its unlensed position, ~β, by the lens equation

~β = ~θ − ~α. (5.2)

It can be shown through the relation between ~̂α and the three-dimensional gravitational
potential, Φ, that this displacement is then described by ~α = ~∇θ ψ, where

ψ =
2
c2

Dls

DlDs

∫
Φ dz (5.3)

is called the (two-dimensional) lensing potential.
The differential effect of the deflection of light on the images, I(x, y), of extended back-

ground sources can to first order be described as a coordinate transformation by taking the
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derivatives in the lens equation (Eq. 5.2) of the original angular position, β, with respect to
the observed position, θ. Substituting ~∇θ ψ for ~α, we obtain the Jacobian matrix, x′

y′

 =

 1 − ψ11 −ψ12

−ψ21 1 − ψ22


 x

y

 , (5.4)

with

ψi j =
∂2ψ

∂θi∂θ j
, (5.5)

resulting in the lensed image I(x′, y′), which is the key observable in our weak lensing study.

Critical surface mass density

To interpret the effect on the source image, we note that such a transformation can be decom-
posed into three parts, namely the identity (I), an isotropic part that describes a multiplication,
and an anisotropic traceless part that describes a shearing of the image:

I −
1
2

(ψ11 + ψ22)I +

 − 1
2 (ψ11 − ψ22) −ψ12

−ψ21
1
2 (ψ11 − ψ22)

 . (5.6)

To relate ψi j with the density of the lensing mass, we start with the isotropic term, which
is half the Laplacian of the lensing potential: 1

2 (ψ11 +ψ22) = 1
2∇

2
θ ψ. From Eq. 5.3, we obtain

1
2
∇2
θ ψ =

1
c2

DlDls

Ds

∫
4πGρ dz , (5.7)

which is a dimensionless quantity. Defining the surface mass density as

Σ ≡

∫
ρ dz (5.8)

and gathering the rest of the right-hand side into

4πG
c2

DlDls

Ds
≡ Σ−1

cr , (5.9)

with Σcr being the critical surface mass density, we find that the isotropic term can be written
as

κ ≡
1
2
∇2
θ ψ =

Σ

Σcr
, (5.10)

with κ a normalized dimensionless surface mass density. Recognizing that ∇2
θ ψ = ~∇ · ~α is

the divergence of the deflection of the light rays (i.e., the manner in which those light rays
converge due to the lensing effect), κ is simply the convergence.
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Shear and intrinsic ellipticity

The shear matrix in Eq. 5.6 has two independent components, simply called the shear γ =

γ1 + iγ2, with γ1 = 1
2 (ψ11 − ψ22) and γ2 = ψ12 = ψ21. Equation 5.4 then becomes x′

y′

 =

 1 − κ − γ1 −γ2

−γ2 1 − κ + γ1


 x

y

 . (5.11)

This transformation leads to the magnification and distortion of the light distribution of
background sources. In this work, we focus on the most commonly used net distortion or
reduced shear g = g1 + ig2 ≡ (γ1 + iγ2)/(1 − κ), x′

y′

 = (1 − κ)

 1 − g1 −g2

−g2 1 + g1


 x

y

 , (5.12)

where the transformation is written as a multiplication of (1 − κ) and a distortion matrix
describing the alignment of lensed sources in the foreground potential.

The effect on a circular source is a shearing into an ellipse with axis ratio q = b
a as

q =
1 − |g|
1 + |g|

⇔ |g| =
1 − q
1 + q

=
a − b
a + b

(5.13)

and position angle ϕ via
g = |g| (cos 2ϕ + i sin 2ϕ) . (5.14)

As mentioned before, we do not measure this gravitational distortion directly. Back-
ground sources have an intrinsic shape distribution, and we effectively measure the combined
effect of their intrinsic shape and a weak lensing distortion. It is adequate to describe images
by their quadrupole brightness moments or their ellipticities as well as the respective response
to weak shear distortions. It is straightforward to use the common definition9 of ellipticity,
defined as the reduced shear needed to create the intrinsic shape ε = ε1 + iε2 of a source from
an image with circular isophotes (Bernstein & Jarvis 2002, Kuijken 2006). The resulting el-
lipticity, ε, after transforming an image with intrinsic10 ellipticity ε I by a distortion, g, is then
given by (Seitz & Schneider 1997)

ε =
ε I + g

1 + g∗ε I for |g| ≤ 1 , (5.15)

with g∗ the complex conjugate of g.
The intrinsic shape distribution is called the shape noise and, assuming no preferred di-

rection on the sky, should average to zero:
〈
ε I

〉
= 0. This way, each background shape

measurement, ε, is then an independent estimate of the underlying reduced shear, g.
In this paper we make use of the fact that the lensing signal is weak (i.e., κ � 1) and

assume g ≈ γ.

9An alternative definition of ellipticity is often denoted as |χ| = 1−q2

1+q2 , related to the geometrical eccentricity, and
called polarization (e.g., Seitz & Schneider 1995, Viola et al. 2014).

10We note that our notation differs from Paper I. Here, the measured ellipticity is denoted as ε, instead of ẽ (Paper
I), and the intrinsic ellipticity is denoted as ε I , instead of e.
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5.2.2 Estimation of the surface density profile

The shear induced by gravitational lensing is sensitive to the density contrast. For an axisym-
metric lens, we can write |γ|(R) = κ(≤ R) − κ(R), where κ is the average convergence within
radius R. In fact, this relation holds for other mass distributions if we average azimuthally
around the lens. In this work, we study the stacked signal of many lenses and assume a net
axisymmetry (see, e.g., Evans & Bridle 2009, Oguri et al. 2010, Clampitt & Jain 2016, van
Uitert et al. 2017, for weak lensing studies on elliptical lenses).

Since it can be seen from Fig. 5.1 that the gravitational shear acts in the radial direction,
we define the tangential and cross components of the shear as γ+

γ×

 =

 − cos(2φ) − sin(2φ)

sin(2φ) − cos(2φ)


 γ1

γ2

 , (5.16)

with φ the counterclockwise angle between the positive x axis11 and the vector from lens to
source. This gives

Σ(≤ R) − Σ(R) ≡ ∆Σ(R) = γ+(R) Σcr , (5.17)

with ∆Σ(R) the excess surface density (ESD) at a radius R around the lensing mass. In axisym-
metric lenses, the cross component of the shear cannot arise from gravitational lensing and
should average to zero, if only produced by intrinsic source orientations, and can therefore be
used as an indication of systematic effects, such as imperfect corrections for the point-spread
function (PSF; Schneider 2003, and Appendix 5.A.3).

The ESD is then estimated using the observed ellipticities of an ensemble of sources
around the lens

∆Σ(R) =
〈
ε+ Σcr,ls

〉
(R) , (5.18)

with each ε+Σcr,ls an independent, albeit noisy, estimate of the ESD. Here, 〈·〉 denotes a
weighted average, with weights to be specified.

The Σcr,ls behaves as a geometric scaling factor, indicating the lensing efficiency for each
lens-source combination. Since the variance of the noise in ∆Σ is then affected by Σ2

cr,ls , the
relative precision, or inverse variance, carried by each ε+ scales as Σ−2

cr,ls.
In this paper we study the ESD profile in co-moving radial bins, and we therefore use the

co-moving critical surface density

Σcr,com = (1 + zl)2 Σcr,prop. (5.19)

In practice, the distance to each background source is not known exactly and is estimated
by its redshift probability distribution, p (zs). Taking this into account, we estimate the co-
moving critical surface density via

〈
Σ−1

cr,ls

〉
=

4πG
c2 D(zl) (1 + zl)2

∫
D(zl, zs)

D(zs)
p(zs)dzs. (5.20)

11Of the coordinate system in which γ1 and γ2 are defined.
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Figure 5.2: Estimated ellipticity and axis ratio distributions of sources in the KiDS-450 catalog. Top:
Two-dimensional histogram of ellipticities. Middle: Histogram of the absolute ellipticity, |ε |. Bottom:
Histogram of the ellipse axis ratio, q.

5.2.3 Statistical framework

In this section we discuss the estimation of
〈
ε+ Σcr,ls

〉
. We refer to Paper I for a complementary

discussion.
Important aspects of a good estimator, ε̂, are: (i) minimal bias, defined as the difference

between the expected value of the estimator, 〈ε̂〉, and the value of the quantity being esti-
mated, for instance the shear (γ) or, in this case, ∆Σ; (ii) high efficiency, proportional to the
inverse variance of the estimator, σ−2

ε̂ ; and (iii) robustness, meaning the estimator retains
these properties for a sufficient range of likely parameter distributions.

Bias

Even though the measured ellipticity, ε, is not a linear combination of the intrinsic shape, ε I ,
and the shear, γ, it can be shown (Seitz & Schneider 1997) that, in the absence of further
uncertainties, the mean µ (ε) is an unbiased estimator for the underlying shear and that this
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is independent of the intrinsic ellipticity distribution, P
(
ε I

)
. In the canonical approach, the

ESD is therefore estimated as a weighted mean of an ensemble of lens-source combinations,

∆Σ(R) =

∑
ls wlsε+,lsΣcr,ls∑

ls wls
, (5.21)

where we use
wls = ws

〈
Σ−1

cr,ls

〉2
. (5.22)

Here, the weight ws is assigned to each measured ellipticity, scaled by the estimated lensing
efficiency, as explained in the previous section (see, e.g., Viola et al. 2015, Dvornik et al.
2017, Bellagamba et al. 2019).

In practice, there are various sources of uncertainty at each step of the process, such as
source selection bias, distortion by the PSF, and biases due to the measurement pipeline.
These lead to convolutions of the ellipticity distribution, before and after the gravitational
lensing effect. The result is a bias in the mean as an estimate of the ESD (Melchior & Viola
2012, Refregier et al. 2012, Kacprzak et al. 2012, Viola et al. 2014, Kacprzak et al. 2014). In
this case, the intrinsic shape distribution will play a role.

The weighted mean, µ, is a statistic that, for a set of measurements εi with weights wi,
finds the estimate of γ that minimizes the loss function

S µ =
∑

i

wi

[
(εi,1 − γ1)2 + (εi,2 − γ2)2

]
, (5.23)

that is, it is a least squares (LSQ) or L2 norm regression method and arises naturally as the
optimal estimator for Gaussian distributions.

Figure 5.2 shows that the measured ellipticity distribution, P(ε), displays crucial differ-
ences with a Gaussian distribution, showing a sharp peak and a slower decline, including a
higher number of high ellipticities, |ε|. This central peak is an unbiased tracer of the under-
lying shear (Paper I). By Eq. 5.23, the mean is sensitive to outliers and therefore not robust
when inferring the shear.

In contrast, the LAD or L1 norm regression minimizes the loss function,

S LAD =
∑

i

wi

√
(εi,1 − γ1)2 + (εi,2 − γ2)2 . (5.24)

The LAD estimate is also known as the median in one dimension or the spatial median in
higher dimensions. LAD is more sensitive to the peak and less sensitive to high ellipticity
outliers. Where the mean is expected to be biased low (Melchior & Viola 2012, Refregier
et al. 2012, Kacprzak et al. 2012, Viola et al. 2014, Kacprzak et al. 2014), we expect this to
be less so for the LAD (Paper I).

Efficiency

The formal definition of efficiency, η̃, relates the inherent (Fisher) information, I, of a sample
to the statistical variability around the expected value of the estimator, usually taken to be the
variance, σ2

ε̂ , of the estimator:

η̃ =
1
I · σ2

ε̂

. (5.25)
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Since the variance of an unbiased estimator cannot be less than the reciprocal of the informa-
tion, I−1 ≤ σ2

ε̂ , we have 0 ≤ η̃ ≤ 1 (Rao 1945, Cramér 1946).
As we are comparing two estimators with unknown bias, it is appropriate to use the rela-

tive efficiency,

η =
σ2
µ

σ2
LAD

, (5.26)

with η < 1 indicating a higher efficiency for the mean, and vice versa.
Paper I showed that the LAD consistently performed better than the mean, with both

higher efficiency and less bias, for various cusped intrinsic ellipticity distributions, including
the shear catalog from CFHTLenS. In what follows, we take the CFHTLenS shear distribution
shape to be representative of KiDS data as well since both surveys were processed with the
THELI pipeline (Erben et al. 2013) and the shape measurement pipeline lensfit (Miller et al.
2007, Kitching et al. 2008, Miller et al. 2013).

5.2.4 Halo model
Studying the effects of estimator choice on the weak lensing signal forms the technical core
of this paper. The scientific goal, however, is to assess the relevance on the inference of
physical quantities, such as the derivation of a lensing halo mass from an ESD profile. Since
we calculate the stacked signal for an ensemble of clusters with some common (observable)
property (here a range in r-band luminosity), of interest is the scaling relation between the
observable and derived lensing mass, M200, where we use the definition with respect to the
mean density of the universe.

To do so, we modeled the lens density profile the same way as Dvornik et al. (2017),
using the halo model (Seljak 2000, Peacock & Smith 2000, Cooray & Sheth 2002, van den
Bosch et al. 2013, Cacciato et al. 2013, Mead et al. 2015). The initial lens density profile
is described by a Navarro-Frenk-White profile (Navarro et al. 1996). We used the mass-
concentration relation given by Duffy et al. (2008) and allowed for a re-normalization factor,
fc (Viola et al. 2015).

A dominant source of systematic bias in stacked weak lensing analyses is a miscentering
of the lenses, which can be due to an offset of the cluster halo with the visible distribution of
galaxies (see, e.g., George et al. 2012) or the resolution of the cluster detection method (less
than 0.1 Mpc h−1 for AMICO; see Bellagamba et al. 2018). Following Johnston et al. (2007)
as well as numerous subsequent works (e.g., Oguri et al. 2010, Viola et al. 2015, Dvornik et al.
2017, Bellagamba et al. 2019, Giocoli et al. 2021), we allowed a fraction, poff , of clusters to
be offset from the center of the galaxy distribution, effectively smoothing the central stacked
∆Σ profile with a characteristic radius, Roff .

At large radii, typically beyond a few megaparsecs, the clustering of dark matter halos
starts to dominate the signal. This “two-halo” term depends on the halo bias, b (Dvornik
et al. 2017), and is modeled following Tinker et al. (2010). At small radii, the baryonic
component of central galaxies can contribute to the signal, which is adequately described by
a point mass, M?, in the model (Viola et al. 2015, Dvornik et al. 2017).

In Table 5.1 we summarize these six free parameters for our halo model implementation,
analogous to Dvornik et al. (2017).

In the AMICO cluster sample with 6925 lenses in 440 square degrees, many background
sources are lensed by more than one cluster, contributing to the estimate of the ESD profile in
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Table 5.1: Summary of the halo model fitting parameters and priors.

Parameter Prior

fc [0.0, 8.0]

poff [0.0, 1.0]

Roff [ h−1 Mpc ] [0.0, 1.0]

b [0.0, 10.0]

log (M?) log[ h−1M� ] [9.5, 12.5]

log (M200) log[ h−1M� ] [11.0, 17.0]

various radial bins of different clusters. In the model fitting, we took the covariance between
the ESD estimates into account, as described in Sect. 5.3.3 (Viola et al. 2015, Dvornik et al.
2017, Bellagamba et al. 2019).

5.3 Data and analysis

Figure 5.3: Overview of the KiDS-450 observations, with the KiDS-N (upper) and KiDS-S (lower)
patches. The solid gray lines represent the planned KiDS survey area. Overplotted are the observed 1
square degree tiles, color coded with respect to their correspondence with the GAMA survey patches
(G9 red, G12 yellow, G15 green, G23 blue, and GS purple; see Hildebrandt et al. 2017, for more
details). The AMICO clusters analyzed in this work are represented by black dots.

In this paper we use a lensing cluster catalog and a background source catalog from KiDS-
450 (de Jong et al. 2017), an optical wide-field imaging survey with OmegaCAM (Kuijken
2011) on the VLT Survey Telescope (VST; Capaccioli & Schipani 2011, de Jong et al. 2013).
KiDS-450 consists of two patches, KiDS-N and KiDS-S (see Fig. 5.3), with 454 tiles of
imaging data, for a total of 449.7 deg2, in four optical filters, ugri. The survey was designed
for lensing, ensuring a stable PSF, low seeing (< 0.96′′, with an average of 0.66′′ in r), and
good photometric redshifts (photo-z; Hildebrandt et al. 2017).

The KiDS data were reduced with ASTRO-WISE (Valentijn et al. 2007, Verdoes Kleijn
et al. 2012, Begeman et al. 2013, McFarland et al. 2013), as described in de Jong et al.
(2015), Hildebrandt et al. (2017). Photometric redshifts, also termed zB, were determined
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using a Bayesian photo-z estimation (BPZ; Benítez 2000, Coe et al. 2006) with PSF-matched
photometry, as described in Hildebrandt et al. (2012), Kuijken et al. (2015), Hildebrandt et al.
(2017).

5.3.1 Lenses
We made use of the galaxy cluster catalog derived with AMICO (Bellagamba et al. 2011,
Radovich et al. 2017, Bellagamba et al. 2018), extracted from 440 tiles of KiDS-450 data
and described in Maturi et al. (2019) and Bellagamba et al. (2019). For each cluster, the
luminosity L200 is defined12 as the sum of r-band luminosities of bright candidate member
galaxies, weighted by membership probability (see Maturi et al. 2019). We selected galaxies
with k-corrected r-band magnitudes brighter than m∗(zl) + 1 within R200(zl), where zl is the
estimated cluster redshift and R200 is derived from the adopted cluster model and is used
in the construction of the cluster detection filter, as defined in Maturi et al. (2019). In this
sense, L200 is defined analogously to the apparent richness, λ∗, which is a sum of membership
probabilities of galaxies with m < m∗ + 1.5, within R200.

We selected clusters in the range 0.1 ≤ zl ≤ 0.6. We excluded clusters below z = 0.1 due
to their unfavorable lensing geometry and above z = 0.6 due to the low density of background
sources. For some clusters, no lens-source pairs were found, due to source selection criteria
or masking. Our final selection comprises 6925 clusters, divided over the KiDS-450 survey
area as shown in Fig 5.3 and described in Table 5.2. The redshift distribution of these clusters
is shown in Fig. 5.4, with a median redshift of zl = 0.39.

Table 5.2: Summary of the survey patches as described in Hildebrandt et al. (2017), with corresponding
numbers of KiDS mosaic tiles and analyzed clusters.

KiDS field Subfield Tiles Clusters

North G9 65 1039

G12 113 1778

G15 112 1737

South G23 101 1517

GS 63 854

We divided the clusters into 13 bins of cluster L200. The limits of these bins were chosen
so that the signal-to-noise ratios of the ESD measurements were approximately the same in
each bin. We give an overview of these bins, together with the estimated M200, in Table 5.3.

5.3.2 Sources
We selected an initial sample of background sources using the same photometric redshift
criteria as Hildebrandt et al. (2017), 0.1 < zB ≤ 0.9, to reduce the outlier rate. We also
applied the cut zl + ∆z < zB, following Dvornik et al. (2017). Here, ∆z = 0.2 is an offset
between the redshift estimation, zl, of the cluster by AMICO and the photometric redshift,

12We note that this does not take intracluster light into account.
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zB, of the source to sufficiently lessen the contamination of the background sample by cluster
member galaxies (see also Appendix 5.A.2).

Our selection of AMICO clusters is deeper than the lenses from the Galaxy And Mass
Assembly (GAMA Driver et al. 2011, Robotham et al. 2011) catalog used in Dvornik et al.
(2017). As can be seen in Fig. 5.4, the redshift distributions of lenses and background sources
significantly overlap, and the cut at ∆z = 0.2 reduces the number density severely for clusters
at higher redshift. Following Bellagamba et al. (2019), we also selected background sources
using the color selection proposed by Oguri et al. (2012):

g − r < 0.3 ∨ r − i > 1.3 ∨ r − i > g − r. (5.27)

In Fig. 5.5 we show the photometric redshift distribution of this cut in the KiDS-450 catalog
and compare it to the photometric and spectroscopic redshift distribution of the same cut
in the spectroscopic redshift (spec-z) catalog used in Hildebrandt et al. (2017). Based on
this analysis, we additionally required zB ≥ 0.6 for this selection to reduce contamination
by sources at low redshift and find that 98 % of the galaxies in this color selection have
zspec > 0.6.

Figure 5.4: Redshift distribution of AMICO clusters (gray), with a median redshift of zl = 0.38 (dashed
gray), and KiDS-450 background sources (purple), with a median redshift of z = 0.68 (dashed pur-
ple). In blue (DIR), we show the initial selection following Hildebrandt et al. (2017) and Dvornik et al.
(2017). In red, we show the estimated redshift distribution of the gri color selection (COL), correspond-
ing to the bottom panel of Fig. 5.5.

Redshift distribution

To estimate the redshift distribution of background galaxies, we did not directly use the
individual redshift probability distribution, p (zs) , per source galaxy. Instead, we applied a
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weighted direct calibration method (DIR), as motivated by Hildebrandt et al. (2017).
For each cluster, we used the spec-z catalog described in Hildebrandt et al. (2017) to select

objects using the same selection criteria as described above. We then used the normalized
spectroscopic redshift distribution, n (zs), of this sample to calculate the co-moving critical
surface density analogous to Eq. 5.20:

〈
Σ−1

cr,l

〉
=

4πG
c2 D(zl) (1 + zl)2

∞∫
zl+∆z

D(zl, zs)
D(zs)

n(zs)dzs. (5.28)

The resulting redshift distribution for selected sources from the full KiDS-450 catalog is
shown in Fig. 5.4.

Figure 5.5: Redshift distribution of background sources selected by color. The upper panel shows the
distribution of the photometric redshift, zB, of the sources in the KiDS-450 catalog that satisfy the color
cut of Eq. 5.27, of which we select the sources with zB ≥ 0.6 (red) and discard those with zB < 0.6
(blue). The bottom two panels show the same selection applied to the spec-z catalog (Hildebrandt et al.
2017), plotted in terms of photometric redshift (middle) and spectroscopic redshift (lower). We find the
contamination of sources with zB ≥ 0.6 and zspec < 0.6 is ∼ 2%.
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Shape measurements

For shape measurements, the r-band data were reduced using the THELI pipeline, devel-
oped to meet the requirements for weak gravitational lensing analyses (Erben et al. 2005,
2009, Schirmer 2013, Erben et al. 2013). Galaxy shapes in the KiDS-450 catalog were then
measured by lensfit (Miller et al. 2007, Kitching et al. 2008, Miller et al. 2013, Fenech Conti
et al. 2017).

For each source, lensfit produces the ellipticity (ε1, ε2), an approximately inverse-variance
weight ws (see Miller et al. 2013), and a fitting quality parameter. We excluded sources with
unreliable ellipticities from our source sample, using the same lensfit selection criteria as
described in Hildebrandt et al. (2017).

In Paper I we compared the performance of estimators for ellipticity measurements in
the CFHTLenS data with a subset of that catalog, selecting sources on the signal-to-noise
ratio parameter νSN output by lensfit. We repeated that approach for a qualitative comparison
here, using two subsets of the selected KiDS-450 sources. The first set selects sources with
νSN ≥ 20, similar to Paper I, retaining ∼ 30% of the full background sample. The second set is
a more stringent cut of the first set, additionally selecting objects with ws ≥ 14.5, comprising
∼ 20% of the full sample.

Effective source density

The KiDS-450 catalog includes a filtering on general object detection and quality flags, for
example, possibly blended sources or artifacts, as described by Kuijken et al. (2015) and
Hildebrandt et al. (2017), and we discarded objects that lie in a mask. This removed ap-
proximately ∼ 12% of the sources. Our final selection comprises 14124197 sources, which
translates to an effective number density of neff ≈ 8.23 arcmin−2, as defined in Heymans et al.
(2012b),

neff =
1
A

(∑
i wi

)2∑
i w2

i

, (5.29)

with A the effective surface area, excluding masked regions.

5.3.3 Implementation
ESD estimation

Following Bellagamba et al. (2019), we measured the ESD in 14 logarithmic bins between
0.1 Mpc h−1 and 3.16 Mpc h−1. Not only does this make for an easy comparison of the results,
but it has several other practical advantages.

We avoided radii smaller than the AMICO detection pixel size, which has a median size
of 0.1 Mpc h−1, to lessen the chance of a mismodeling the halo miscentering (Sect. 5.2.4).
Here, the line of sight is also most contaminated by cluster members, which can lead to an
overabundance by incorrectly including ellipticity measurements that carry no lensing signal,
or by an obscuring and blending of background sources, which leads to an under-abundance
of sources. While these effects may partially cancel out in the number counts, the effects on
the ESD measurements do not cancel out, as the first leads to a diluted signal and the second
to a very poor signal-to-noise ratio (see Appendix 5.A.2 for an assessment of cluster member
contamination).
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At large radii, systematic additive biases can start to play a role (see, e.g., Dvornik et al.
2017, for this data set), which may differ for each KiDS survey patch (Fenech Conti et al.
2017, Hildebrandt et al. 2017). Another concern at larger separations is that the two-halo
term becomes the dominant contribution to the ESD signal, which means we would need to
properly constrain the halo bias, and we explain below how our approach does not fully take
the clustering of dark matter halos into account.

The combination of background selection criteria from Dvornik et al. (2017) and Bel-
lagamba et al. (2019) allows us to retain the three inner radial bins between 0.1 and 0.2 Mpc
h−1. We justify this inclusion in Appendix 5.A.2, where we repeat the tests of Dvornik et al.
(2017).

Each lens-source pair was then assigned a combined weight of

wls = wsΣ
−2
cr,l , (5.30)

as motivated in Sect. 5.2.2.
For LAD optimization, that is, the estimator that minimizes the L1 norm (Eq. 5.24), there

exists no general analytic solution. The problem can, however, be formulated as a linear
optimization, which can be solved iteratively (e.g., with simplex-based methods; Barrodale
& Roberts 1973). In our weak lensing analyses, we find that convergence is robust.

To derive the covariance matrices for the ESD estimates using the mean and LAD in the
same way, we can therefore also not employ the analytical prescription of Viola et al. (2015)
used in earlier KiDS analyses (e.g., Sifón et al. 2015a, van Uitert et al. 2016, Brouwer et al.
2016). Instead, we used a bootstrap approach.

Since the cluster bins of highest r-band luminosity, L200, contain only a small number
of clusters, covering only a small fraction of the KiDS-450 tiles, we cannot use the same
bootstrap approach as Viola et al. (2015) and Dvornik et al. (2017) by bootstrapping 1 deg2

tiles with replacement. Instead, we bootstrapped the source catalog, in accordance with Bel-
lagamba et al. (2019).

This means that we are not sensitive to the clustering effect of dark matter halos, which
justifies our choice of radial lens-source separation mentioned above. To assess the accuracy
of these assumptions, we estimated the covariance matrix of the full 6925 cluster sample by
bootstrapping the sources and by bootstrapping by KiDS-450 tiles in Appendix 5.A.4. We
conclude that our bootstrapping method yields a good estimate of the covariance matrix.

Halo model fitting

Having produced the LSQ and LAD shear profiles for the stacked clusters, we fit a halo model
to the results. We used the fitting procedure described in Dvornik et al. (2017), producing the
full posterior probabilities by a Bayesian inference technique, via a Monte Carlo Markov
chain (MCMC) maximum likelihood approach. We assumed a Gaussian likelihood and made
use of the full covariance between radial bins:

L ∝ exp
[
−

1
2

RTC−1R
]
, (5.31)

where the R are the residuals and C is the covariance matrix.
We used the emcee Python package (Foreman-Mackey et al. 2013) for the MCMC pro-

cedure, setting flat priors for all parameters. For the evaluation of the power spectrum and
the halo mass function, we used the median redshift for each cluster luminosity bin.
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5.4 Results
We present our results, starting with the derived ESD profiles obtained with the mean and
LAD estimators, discussing potential biases and efficiency. Then, we show the results of the
halo model fitting (i.e., M200 for each luminosity bin) and conclude with the scaling relation
between L200 and M200. We visualize the results for the case in which all 6925 clusters are
stacked together, giving the numerical results of the 13 luminosity bins in Table 5.3.

5.4.1 ESD profiles
We calculated the ESD profiles using 104 bootstraps with replacement. We estimated the
ESD signal in the 14 radial bins, using both the mean and the LAD estimators, for each
bootstrapped sample, preserving the bootstrap order of all 28 values throughout the whole
process.

We find the estimator distribution to be almost perfectly normal, as expected from the
central limit theorem. The correlation between the 14 bins of the full stack of clusters is
shown in Fig. 5.6 and is given by

ρi j ≡
Covi j

σiσ j
, (5.32)

where i and j denote the radial bin subscripts.
The upper-left part of the matrix shows the correlation between the LAD estimates of the

radial bins, and the lower-right part the shows the mean results. Although the correlation
between bins is very low, it is clear that the overall trends are the same for the two estimators.

The signal-to-noise ratio of the recovered ESD profile of the full stack, which is shown
in Fig. 5.7, is high enough to allow us to notice the difference between the estimators, which
indicates a small relative bias. The blue points show the LAD estimates, and the red points
represent the mean estimates, with error bars in both cases defined as the square root of the
diagonal elements of the covariance matrices (i.e., the classical standard deviation).

Tests for systematic effects, such as the cross signal, and a test for systematic additive
noise around random points were already conducted by Dvornik et al. (2017) and Bellagamba
et al. (2019). In Appendix 5.A we repeat these tests for completeness since we use the KiDS-S
field and an extended source selection with respect to Dvornik et al. (2017) and use a different
source selection and three smaller radial bins with respect to Bellagamba et al. (2019). Our
results show no residual systematic effects, in accordance with these papers.

5.4.2 Bias and efficiency
A possible bias is expected to depend on the strength of the underlying shear field since a
zero lensing signal would imply no bias. In that case, the expected relevant distributions,
tangential ellipticities or noise, are symmetric around zero ellipticity.

To quantify the difference between the ESD estimates, which we call the relative bias,
∆ΣMean − ∆ΣLAD, we assumed13 to first order

∆ΣMean − ∆ΣLAD = m · ∆Σ , (5.33)

13This assumption is only made here to quantify the bias and is not used elsewhere in the paper.
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Figure 5.6: Correlation matrix between the stacked ESD signals in different radial bins, using the full
AMICO cluster catalog and 104 bootstraps. The upper-left triangle shows the correlation, ρLAD, between
the LAD estimations. The lower-right triangle shows the correlation, ρmean, between the ESD estimates
using a weighted mean. We note the general similarities in the two patterns.

where we arbitrarily14 use ΣLAD for Σ.
We used the full stack for its high signal-to-noise ratio, using the 15.9th and 84.1th per-

centiles of the differences in all bootstrap results to calculate uncertainties for each bin. We
find m = −0.088 ± 0.020. In Fig. 5.8 we show this relative bias, plotting for visualization
purposes

∆ΣMean − ∆ΣLAD

∆Σ
(5.34)

and a horizontal line at m = −0.88 to give a more intuitive impression of the relative error
bars.

We reiterate that it is impossible to determine the absolute bias of each estimator as we
did in Paper I, as we have no knowledge of the true ESD. However, the overall trend between
the mean and LAD is similar in sign and order of magnitude, as we found for the CFHTLenS
data in Paper I.

In Fig. 5.9 we show the derived relative efficiency (Eq. 5.26) η = 1.047 ± 0.006, which
is in accordance with the findings for CFHTLenS data in Paper I. The measured15 ellipticity
distribution is expected to differ for shape measurements with a higher signal-to-noise ratio.

14We find no qualitative difference in our results when we use ∆ΣMean instead.
15i.e., the combination of the intrinsic distribution and the various effects before and after the lensing by AMICO

clusters, which affects the observation and measurement of the source ellipticities.
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Figure 5.7: Estimated ESD profile from the full AMICO cluster catalog, using the LAD estimator (blue)
and a weighted mean (red). The error bars are the square roots of the diagonal values of the respective
covariance matrices. The solid lines represent the best fitting halo model obtained by the MCMC fit.
The shaded regions show the 68.3% confidence bands, estimated using the 15.9th and 84.1th percentiles
of the MCMC realizations.

For example, the cuspiness of the distribution shown in Fig. 5.2 can be smoothed out by noise
convolutions. As the LAD estimation is more sensitive to the central peak, this will affect its
precision.

In Paper I this was confirmed in the comparison of simulated data with and without noise,
as well as in the results of the CFHTLenS sample with a stringent signal-to-noise selection
compared with the full sample. As in Paper I, we compared the relative efficiencies for our
selections with νSN ≥ 20 and with wi ≥ 14.5, finding indeed a higher efficiency for less noisy
shapes, namely η = 1.240 ± 0.010 and η = 1.386 ± 0.018, respectively.

5.4.3 Halo masses

We ran MCMC chains of 120 000 samples, using 120 walkers with 1000 steps each. The
resulting chains were fully converged after the first 200 steps, so we discarded the first 24
000 samples.

We summarize the M200 derived from the ESD estimation of the 13 luminosity bins in
Table 5.3. Reduced χ2, estimated between 0.730 and 2.528, are fairly consistent between
derived results for mean and LAD.
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Figure 5.8: Difference between the recovered ESD signals in the radial bins, showing
(∆Σmean − ∆ΣLAD) /∆Σ. The solid white line represents the average difference, with the shaded region
showing the formal 1σ error. As a possible bias in the recovered values is expected to increase with
increasing shear, the differences are plotted versus the full ESD signal in each bin where we use ∆ΣLAD,
but we note that the small variations in the individual points, when plotting against ∆Σmean instead, give
the same result, within statistical significance.

For the full stack of clusters, we derived

M200 =
(
0.453+0.030

−0.030

)
× 1014h−1M� , χ2

ν = 1.25 (Mean) (5.35a)

M200 =
(
0.487+0.033

−0.036

)
× 1014h−1M� , χ2

ν = 1.37 (LAD). (5.35b)

The confidence intervals are derived from the 15.9th and 84.1th percentiles of the posterior
distributions.

The best fitting ESD models are shown in Fig. 5.7. The 68.3% confidence bands overlap
at some radii and are in tension at other radii. While the difference in ESD is significant, the
68.3% confidence intervals for M200 just touch.

5.4.4 L200 − M200 scaling relation
We assumed a power-law relation between the derived halo masses and the median r-band
luminosity of each cluster bin. We fit this relation in the form

log
(

M200

Mpiv

)
= a + b log

(
L200

Lpiv

)
, (5.36)

with a the intercept and b the slope, where Mpiv ≈ 1014.1h−1M� and Lpiv ≈ 1011.8h−2L� are
typical pivotal values of the halo mass and luminosity, derived from the fit itself. The fit was
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Figure 5.9: Relative efficiencies, η ≡ σ2
Mean/σ

2
LAD, defined as the ratio of the diagonal elements of the

covariance matrices. The relative efficiencies using the full KiDS-450 source catalog are shown in red.
The purple and blue represent the higher S/N and higher lensfit weight selections, respectively. The
solid lines represent the average η for each selection, with the shaded regions showing the 1σ errors.

done in log basis as the derived posterior distributions of the halo mass are log-normal.
We did not take a redshift dependence into account, as Bellagamba et al. (2019) showed

only a marginal and not very steep dependence of the halo mass on redshift.
We obtained the scaling relations

M200

1014.1h−1M�
= (0.97 ± 0.06)

(
L200

1011.8h−2L�

)(1.24±0.08)

(Mean) (5.37a)

M200

1014.1h−1M�
= (1.03 ± 0.05)

(
L200

1011.8h−2L�

)(1.24±0.08)

(LAD) (5.37b)

and plot the results in Fig. 5.10. As with the derived ESD profiles and halo masses for the
full stack of clusters, the 68.3% confidence bands just touch at the pivot point

(L200,M200) =
(
1011.8h−2L�, 1014.1h−1M�

)
, (5.38)

recognizable as the narrowest parts of the confidence bands.

5.5 Summary and conclusions
We conducted a weak shear analysis of 6925 AMICO clusters in the KiDS-450 data We
derived a tightly constrained scaling relation between r-band luminosity, L200, and average
lensing masses, M200, in concordance with earlier results in the literature.
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Table 5.3: Properties and lensing results of the individual luminosity bins, with the median L200 and
zl. The errors on the median L200 and derived M200 in each luminosity bin are the differences with the
15.9th and 84.1th percentiles. L200 values are given in

[
1010h−2L�

]
, M200 in

[
1014h−1 M�

]
.

Range L200 Clusters zl M200 Mean χ2
ν M200 LAD χ2

ν

[0.4, 17.4[ 12.3+3.5
−4.6 2346 0.29 0.187+0.029

−0.026 1.27 0.191+0.031
−0.026 1.18

[17.4, 24.8[ 20.8+2.7
−2.3 1545 0.41 0.416+0.061

−0.076 2.19 0.445+0.055
−0.061 1.60

[24.8, 31.8[ 28.0+2.5
−2.2 1027 0.41 0.371+0.048

−0.046 0.81 0.385+0.050
−0.046 0.91

[31.8, 40.5[ 35.2+3.2
−2.4 685 0.42 0.519+0.078

−0.078 1.34 0.621+0.076
−0.074 1.29

[40.5, 49.0[ 44.4+2.9
−2.7 457 0.42 1.076+0.182

−0.181 2.18 0.998+0.150
−0.139 2.53

[49.0, 59.9[ 54.1+3.6
−3.9 305 0.40 1.387+0.425

−0.335 1.05 1.462+0.533
−0.353 0.98

[59.9, 72.9[ 65.2+5.2
−3.7 202 0.41 1.318+0.267

−0.234 0.77 1.309+0.233
−0.203 0.74

[72.9, 84.1[ 78.6+3.2
−3.9 135 0.38 1.406+0.344

−0.215 1.22 1.528+0.409
−0.254 1.30

[84.1, 102[ 91.8+5.7
−4.8 90 0.39 2.438+0.486

−0.443 0.75 2.472+0.479
−0.425 0.73

[102, 129[ 112+10
−7.2 60 0.40 2.143+0.618

−0.417 0.77 1.914+0.680
−0.373 0.79

[129, 160[ 138+11
−6.9 40 0.395 3.999+1.957

−0.993 1.35 3.715+1.557
−0.910 1.64

[160, 221[ 175+27
−11 26 0.37 4.207+0.713

−0.610 1.47 4.786+0.824
−0.637 1.18

[221, 400[ 277+106
−24 8 0.375 7.638+2.293

−1.613 1.02 9.141+3.105
−1.913 0.81

We investigated the impact of estimator choice for inferring the central moment of the
cusped and skewed ellipticity distribution of background galaxies, finding a relative bias on
the order of a few percent, as predicted in Paper I. We find that the constraints obtained via
LAD regression are tighter than those obtained via LSQ regression, and they significantly
improved as the signal-to-noise ratio of the shape measurements of the background galaxies
increased. Complemented by simulations from Paper I, we give an alternative perspective
on the problem of inferring the central shear value from the skewed distribution of back-
ground galaxy shapes, at the minor cost of increased, but still feasible, computation times for
numerical iterative regression.

5.5.1 L200 − M200 relation

Since the relative bias we found in both this research and in Paper I is approximately propor-
tional to the ESD signal, it is expected that the LAD estimator will mainly have an effect on
the intercept of the L200 − M200 scaling relation. This was confirmed by our results in Eq.
5.37.

The power-law index of the L200−M200 scaling relation was constrained to 1.24±0.08 (Eq.
5.37), independent of estimator choice. This is in agreement with earlier work in the litera-
ture, such as Viola et al. (2015, and references therein), who cite 1.16± 0.13. This agreement
is noteworthy since the AMICO clusters are derived from photometric redshifts, as opposed
to the spectroscopically derived groups from GAMA (Driver et al. 2011, Robotham et al.
2011). The difference in confidence is explained by the increased number of lenses, which is
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Figure 5.10: r-band luminosity-halo mass scaling relations, derived from the ESD profiles estimated
using the weighted mean (red) and LAD (blue). At the pivot point, recognizable as the narrowest parts
of the confidence bands, the relations just touch at the 68.3% confidence level.

not surprising given the large overlap in mass range: Viola et al. (2015) analyzed 1413 galaxy
groups between z = 0.03 and z = 0.33, with r-band luminosity bin limits between 2.5 × 109

and 5.0 × 1012 h−2L�, deriving halo masses between 1.4 × 1013 and 3.5 × 1014 h−1M�.
The choice of estimator produces a difference in intercept at just the 1σ level. Using a

weighted mean to derive the ESD leads to an intercept of 0.97 ± 0.06 in the scaling relation,
while LAD gives an intercept of 1.03± 0.05. This is to be expected as the relative bias seems
roughly constant, when normalized by the ESD (see Fig. 5.8), and in good agreement with
the bias of ∼ 5% found using simulations in Paper I.

As in Bellagamba et al. (2019), we estimate that systematic effects mostly affect the
intercept. While the derived intercept is in agreement with the aforementioned papers, we
note that the chosen definition16 of L200, the difference in redshift range and definitions, and
the completeness of group and cluster membershipcan account for possible differences on
the same order of magnitude. This would not affect our conclusions on methodology, as the
results from both estimators would be similarly affected.

In a further comparison with the scaling relation between richness and mass, cited in

16e.g., Viola et al. (2015), where the group r-band luminosities are calculated by summing over spectroscopically
confirmed group members.
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Bellagamba et al. (2019), we find similar significance in constraints on the slope. We define
bins in luminosity instead of AMICO detection amplitude (Radovich et al. 2017) or richness,
but since the cluster luminosity is tightly correlated with the richness, λ∗, this confirms our
findings.

There are a few differences to consider. We chose not to account for a possible redshift
dependence. This is motivated by Bellagamba et al. (2019) finding only a shallow depen-
dence, which they point out may be driven mainly by the highest redshift bin. Our lensing
analysis employs a slightly different background selection for an increased source density,
combined with a different derivation of the associated redshift distribution, n(z). Another
difference is the inclusion of radial bins at 0.1 ≤ R < 0.2 Mpc h−1. This is expected to only
have a minor effect as the contribution of the stellar mass is an order of magnitude lower than
the halo term at these radii, while the contribution of miscentered halos only starts to become
significant at larger radii (see also Rykoff et al. 2016, Oguri et al. 2018). In this sense, these
findings are a confirmation of the robustness of the results across these papers.

5.5.2 Optimal estimators

Our results are in good agreement with Paper I, with a relative bias between the two estimators
that shows the recovered lensing signal is higher with LAD, suggestive of a lower absolute
bias. At the same time, LAD regression gives a small (albeit significant) gain in efficiency,
giving a reduction in error bars of a few percent, and potentially up to 11% − 18% for shape
measurements of a higher signal-to-noise ratio. Least absolute deviation regression comes
at the cost of a higher computation time, but at a step in the analysis process that does not
dominate the total computational cost.

Both simulations (Paper I) and analyses on real data (this article) cite quantitative results
of significance while at the same time showing similar trends between estimators on a quali-
tative level. We have conducted a cautious and thorough investigation but can never exclude
the unknown: biases arising due to assumptions in the simulations of Paper I or uncorrected
systematic effects in this research, or, most likely, both. However, given the range and real-
ism in simulated distributions and the similarities in findings among those simulations, this
research, and other work in the literature, we are confident that the recovered differences in
results between the two estimators are real.

We note some differences between the two analyses. In Paper I we analyzed the regres-
sion of a sample of ellipticities with a single underlying value of the shear and, for each type
of simulation, a single intrinsic ellipticity distribution. In this research, the situation is more
complex. We studied the stacked signal around samples of lenses and of samples of back-
ground sources at a range of redshifts. This means also stacking noise that has been scaled
by a range in lensing geometries, quantified by Σ−2

cr . Furthermore, in each radial bin of each
luminosity bin, we assume: (i) a constant lensing effect, which is in reality the stacked aver-
age of a range in L200, and therefore a range in M200, confounded by intrinsic scatter between
these two quantities, and (ii) radial distance R from the lens, combined with a miscentering
of halos.

All these effects tend to convolve the intrinsic galaxy shape distribution, which makes
the level of agreement and significance between the two papers in fact remarkably robust. In
conclusion:
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• The combination of Paper I and this research shows that LAD regression is more natu-
rally suited to the cusped intrinsic ellipticity distribution of background galaxies.

• Our simulations in Paper I showed a lower bias for LAD regression than for LSQ
regression in the presence of noise in the background source shape measurements,
while this research confirmed the same relative bias between the two estimators.

• Constraints obtained via LAD regression are comparable with or tighter than con-
straints obtained via LSQ regression.

An optimal estimator is, from a principled point of view, more objective and better suited
than corrections to an approach, which is known to mismatch the sample distribution. More
practically, LAD regression provides a robust consistency check for shear inference, which
has been and still remains a major investment in the field of weak lensing. Keeping different
perspectives, such as exploring these alternative statistical approaches, is fundamental for
determining the way forward.
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5.A Tests for systematics
For completeness, we repeated some of the tests for systematics that were already carried
out in Dvornik et al. (2017) and Bellagamba et al. (2019) because of our difference in sky
coverage, background selection, and estimated redshift distribution compared with those two
studies.

5.A.1 Photometric redshift
We used the same method as Dvornik et al. (2017) to determine the co-moving critical den-
sity. There are two important differences that could affect the uncertainty in Σcr: We selected
lenses at a significantly higher redshift, and we complemented our background source selec-
tion with the color selection described in Sect. 5.3.2.
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We assessed the relative errors in Σcr by performing 104 bootstraps of the spectroscopic
catalog of Hildebrandt et al. (2017). We find the median error on Σcr to be ∼ 0.5%, as shown
in Fig. 5.11.

Figure 5.11: Relative errors in Σcr, estimated using 104 bootstraps of the spectroscopic catalog of Hilde-
brandt et al. (2017). The relative error on the ESD is negligible.

5.A.2 Contamination of the background sample by cluster galaxies

Dvornik et al. (2017) showed that an offset of ∆z = 0.2 is enough to avoid a significant con-
tamination of the background sources by unidentified GAMA group members. For lenses at
a higher redshift, this contamination increases, while at the same time the density of available
background sources decreases due to the observed depth of KiDS-450.

We used the same test as Dvornik et al. (2017) to assess the source density around AMICO
clusters in order to determine the necessary ∆z offset between the lens and the sources. We
find that ∆z = 0.2 is appropriate for our cluster selection (Fig. 5.12).

5.A.3 Individual bin ESD profiles and cross signals

In Fig. 5.14 we show the ESD profiles for the 13 cluster bins, including the cross signal,
which is consistent with zero. We also show the derived halo model fits and their confidence
intervals, comparing the fits using the full AMICO cluster catalog from Fig. 5.7.
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Figure 5.12: Relative source densities around AMICO clusters as a function of radius, R, and the
photometric redshift offset, zB ≥ zl + ∆z, between the lens and the source. We note that some small
under-densities around R = 0.2 h−1 Mpc may be due to the relative normalization.

5.A.4 Tile bootstrap

As described in Sect. 5.3.3, we could not use the same bootstrap approach as Dvornik et al.
(2017), due to the sparsity of lenses in the highest lens luminosity bins. Since our bootstrap
approach described in Sect. 5.3.3 does not account for cosmic variance and is not sensitive
to the clustering effect of dark matter halos, we compare the covariances derived by the two
bootstrap methods for the ESD of the whole lens selection in Fig. 5.13 and find no significant
differences or pattern beyond what is expected from statistical noise. Since we expect the
contribution from cosmic variance to be even lower for subsets of lenses, we conclude that
our bootstrap approach yields a good estimate of the covariance.

5.B Analysis of dependence on outer data points

In Fig. 5.10 it can be seen that the distribution of clusters in the two outermost luminosity
bins is not symmetric. At the lower end, this is due to the selection criterion of λ∗ in the
AMICO catalog. At the higher end, we have only a few clusters.

We assessed the effect these two points have on the L200 − M200 scaling relation by re-
peating the fit without these bins. We find no difference within the statistical uncertainties, as
given in Eq. 5.39:
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Figure 5.13: Left: Correlation derived from bootstrapping the signal by individual sources; same as
Fig. 5.6, but with the color stretch adjusted to the middle plot. Middle: Correlation derived from boot-
strapping the signal in 1 deg2 tiles. The upper-left corners show the correlations from LAD regression.
The lower-right corners show the correlations from using the weighted mean. Right: Comparison of
the errors obtained from bootstrapping sources (LAD: solid blue; mean: solid red) and bootstrapping 1
deg2 tiles (LAD: dashed blue; mean: dashed red).

M200

1014.1h−1M�
= (0.98 ± 0.06)

(
L200

1011.8h−2L�

)(1.25±0.10)

(Mean) (5.39a)

M200

1014.1h−1M�
= (1.02 ± 0.06)

(
L200

1011.8h−2L�

)(1.23±0.09)

(LAD) (5.39b)
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Figure 5.14: Estimated ESD profiles and cross signal of the 13 cluster bins, using the LAD estimator
(blue) and a weighted mean (red). The error bars are the square roots of the diagonal values of the
respective covariance matrices. The solid lines represent the best fitting halo model obtained by the
MCMC fit. The shaded regions show the 68.3% confidence bands, estimated using the 15.9th and
84.1th percentiles of the MCMC realizations. Individual bins are indicated by the range in normalized
luminosity, L ≡ L200 /(1010h−2L�). The lower-right plot shows the ESD profile estimated from the full
AMICO cluster catalog, also shown in Fig. 5.7. The average of the two best fitting halo models from
Fig. 5.7 are shown in each panel as a dotted line for easy comparison.



6
Nederlandse samenvatting

“... en zelfs, als hij laat zien dat alle dingen één zijn door deel uit te maken van eenheid en dat
hetzelfde ook veel is door deel uit te maken van veelheid, lijkt me dat helemaal niet vreemd;
maar als hij laat zien dat de absolute eenheid ook veel is en de absolute veelheid weer één,
dan zal ik oprecht verbaasd zijn.”

– Socrates tegen Zeno in Plato’s dialoog Parmenides, 129B.

In zijn Ideeënleer1 beargumenteert Plato dat onze zintuigelijke waarnemingen slechts mo-
gelijke reflecties of gestalten zijn van een onwaarneembare en unieke universele Vorm.

Voor sterrenkundigen is dit de dagelijkse realiteit: we zijn beperkt tot de informatie die
ons op aarde bereikt in de vorm van elektromagnetische straling – zoals licht – of zwaarte-
krachtgolven. We kunnen in onze directe omgeving – ons zonnestelsel – kijken, maar we
kunnen de Melkweg niet vanaf de andere kant observeren of een zwart gat in een ander
sterrenstelsel opzoeken, metingen doen en weer terugkomen. Onze blik op de hemel is een
momentopname in vergelijking met de miljoenen of zelfs miljarden jaren durende evolutie
van objecten in het heelal.

Dat betekent dat ons perspectief uniek is, maar ook heel beperkt. Het is onze uitdaging
om uit de observaties die we kunnen doen, de indirecte informatie te halen over alles wat we
niet direct kunnen waarnemen. De grote vraag is dan: hoe weten we dat onze conclusies juist
zijn?

In dit proefschrift combineren we daarom het onderzoek naar de verdeling van materie
in groepen en clusters van sterrenstelsels met analyses van de systematische en statistische
onzekerheden van onze onderzoeksmethoden. Zien we echt wat we denken te zien?

1Wellicht beter genaamd “vormenleer” of “gestaltenleer”

133
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6.1 “De hemel bij nacht”
Voor wie op een heldere nacht voldoende lang naar het firmament kijkt2 en steeds nieuwe
sterren ontdekt, terwijl de hemel langzaam voorbij draait, zal het makkelijk voor te stellen
zijn hoe haar aanblik de mensheid reeds duizenden jaren heeft gefascineerd.

Reeds vanaf het begin hebben mensen geprobeerd hun waarnemingen te verklaren en
betekenis te geven. Eén van de oudste voorbeelden is het verhaal van de Plejaden, het Ze-
vengesternte, dat in de Griekse mythologie het verhaal vertelt van zeven zusters, terwijl er
maar zes sterren zichtbaar zijn voor de meeste mensen. Uit oude teksten, zoals van Aratus
van Soli uit de 3e eeuw voor Christus, blijkt dat de Grieken ook uitgingen van zes zichtbare
sterren. Het verhaal lijkt daar ook op aangepast: de verklaring voor het aantal van zes zicht-
bare sterren is, dat één van de zusters (Merope) zich verstopt heeft voor de jager Orion. Maar
waarom de associatie van zes sterren met een verhaal over zeven zusters? Een veel gebezigde
aanname is dat het hier een cognitieve vertekening of cognitieve bias betreft: namelijk dat
men, door het verhaal aan te passen, als het ware naar het eigen verwachtingspatroon toe
heeft geredeneerd.

Het merkwaardige feit is echter dat verschillende culturen over de hele wereld dit verhaal
kennen in één of andere vorm en al deze overleveringen vasthouden aan zeven, waarvan er
één verdwenen is, in plaats van een verhaal te vertellen over zes. Dit suggereert dat deze
verhalen een gezamenlijke oorsprong kennen uit een tijd, zo’n 100,000 jaar geleden, waarin
de zevende ster nog wel te zien was (Norris & Norris 2021). Dat men lange tijd is uitgegaan
van een onvolkomenheid in de mythologieën, gebaseerd op de aanname dat onze eigen ob-
servaties van zes sterren een juiste weergave van de werkelijkheid waren, legt het probleem
van cognitieve bias juist bij onze theorieën. Het laat zien hoe belangrijk het is om ons niet
blind te staren op de beelden die we zien, maar ook alert te zijn op de dingen die wij, zelfs in
de moderne tijd, juist niet zien.

6.1.1 Waarnemingen en vertekening
Wellicht het bekendste voorbeeld van hoe ons perspectief een drempel kan zijn in het vor-
men van juiste theorieën, is het Ptolemeïsche wereldbeeld met de aarde in het centrum, dat
meer dan 1400 jaar heeft standgehouden. Toen steeds groter wordende onnauwkeurigheden
de onhoudbaarheid van dit model duidelijk maakten (zie bijvoorbeeld Figuur 1.1), was Co-
pernicus’ stap naar een heliocentrisch model – met de zon in het centrum – een fundamentele
verandering in het paradigma. Het was echter nog steeds niet genoeg.

Ook Copernicus bleef vasthouden aan een ideaalbeeld van volmaaktheid, namelijk bewe-
gingen in perfecte cirkels. Dit vooroordeel leidde ertoe dat zijn voorgestelde aanpassingen
niet tot overtuigende verbetering leidden. Pas toen Kepler zijn theorie van elliptische banen
formuleerde – een tweede, maar net zo fundamentele stap – konden waarnemingen en theorie
met elkaar in overeenstemming worden gebracht.

In dit geval betreft het een bias in het model, dat intrinsiek niet geschikt was om de wer-
kelijkheid te beschrijven. Een andere bekende vertekening in de astronomie is de Malmquist
bias (Malmquist 1925), veroorzaakt doordat heldere objecten makkelijker te detecteren zijn
en dus op grotere afstand waar te nemen zijn. Objecten die makkelijker te detecteren zijn, lij-
ken vaker voor te komen en zijn ook nauwkeuriger te bestuderen. Dit zou ertoe kunnen leiden

2Zoals een student sterrenkunde bij het gelijknamige waarneempracticum
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dat een steekproef niet aselect is: een zogenoemde selectiebias. Een maatschappelijk voor-
beeld is het probleem van de prominente focus in de geschiedenis van medisch onderzoek op
vrijgezelle, witte mannen (Dresser 1992).

Het brede concept van bias, als discrepantie tussen een waarneming of interpretatie en
de ‘waarheid’, komt regelmatig terug in dit proefschrift, waarin we kijken naar bias in de
waarnemingen, in de modellen, zelfs in de uitkomsten van statistische berekeningen en onze
interpretatie van die uitkomsten.

6.1.2 Donkere materie
Eén van de grootste mysteries in de sterrenkunde is het mogelijke bestaan van donkere ma-
terie: iets wat we niet direct kunnen zien, maar waarvan we wel indirect de effecten kunnen
waarnemen.

Op macroscopische schaal zijn er twee soorten interacties in het universum: één geba-
seerd op elektromagnetisme, die er onder andere voor zorgt dat wij kunnen waarnemen in
het zichtbare licht, radiogolven of andere frequenties; en één gebaseerd op gravitatie, die on-
der andere terug te zien is in de bewegingen in het heelal. Op deze schaal kijken we vooral
naar sterrenstelsels, verzamelingen van biljoenen sterren of meer, zoals onze eigen Melk-
weg. Deze sterrenstelsels hebben de neiging bij elkaar te blijven, van groepen3 van enkele
sterrenstelsels tot grote clusters van honderden stelsels of meer.

Aan het begin van de 20e eeuw kreeg men het vermoeden dat er materie moest zijn, die
wel interacteerde via zwaartekracht, maar niet via elektromagnetisme. Deze materie is daar-
door niet direct waar te nemen. De term ‘donkere materie’ is voor het eerst gebruikt door de
Nederlandse sterrenkundige Kapteyn (1922). De eerste significante waarnemingen kwamen
van Zwicky (1933) in het nabije Coma cluster van sterrenstelsels. Uit deze waarnemingen
leken individuele sterrenstelsels door grote gravitatiekrachten rondgeslingerd te worden. De
zichtbare materie in Coma had echter niet genoeg massa om deze gravitatie te veroorzaken:
Zwicky concludeerde dat er meer dan 400 keer zoveel massa nodig was dan zichtbaar was,
om de grote snelheden die hij observeerde te verklaren. Ook hij gebruikte hiervoor de term
‘Dunkele Materie’.

Het duurde tot in de tweede helft van de 20e eeuw voordat het probleem van deze ont-
brekende of onzichtbare materie systematisch en overtuigend werd aangetoond door Rubin
(1983) uit de interne snelheden van sterrenstelsels. In de jaren daarna bleek dit ook uit waar-
nemingen van de kosmische achtergrondstraling, bijvoorbeeld met de Planck satelliet (Planck
Collaboration et al. 2014). Deze achtergondstraling is een soort echo van de Big Bang. De
patronen in deze gloed suggereren dat er veel meer materie nodig is om de structuur en sa-
menhang van het universum te verklaren, dan direct kan worden waargenomen. Ook uit deze
waarnemingen lijkt er een overweldigende meerderheid van zo’n 80% van alle materie te zijn
die niet zichtbaar is.

Om uit waarnemingen van de hemel massa’s te bepalen, zijn vaak modellen en aannamen
nodig. Zo gaat men er vaak vanuit dat een cluster van sterrenstelsels in evenwicht is, om de
waargenomen snelheden te vertalen naar een massaverdeling. In dit proefschrift gebruiken
we een andere, onafhankelijke methode om de materie in kaart te brengen: gravitationele
lenswerking.

3Onze eigen Melkweg vormt samen met het vergelijkbare Andromedastelsel en een aantal kleinere stelsels de
zogenaamde ‘Lokale Groep’.
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6.2 Gravitatielenzen

Gravitationele lenswerking is voor het eerst waargenomen door Dyson et al. (1920) en is
gevoelig voor alle massaverdelingen, onafhankelijk van de toestand van die massaverdeling
(zoals evenwicht) of de eigenschappen van de materie (heet of koud, zichtbaar of donker).
Deze methode doet geen aannamen over de dynamische evenwichtssituatie in clusters of de
astrofysische processen die de waarneembare straling veroorzaken, maar is gebaseerd op de
geometrie van het heelal.

6.2.1 Kromming van ruimtetijd

Waar wij gravitatie ervaren als een ‘kracht’, wordt deze in de relativiteitstheorie van Einstein
beschreven als een kromming van de ruimtetijd. Door deze kromming zijn er eigenlijk geen
rechte lijnen in het universum. Ook lichtstralen (die geen massa hebben) worden daardoor be-
ïnvloed door de “zwaartekracht” van objecten in de buurt van hun baan. Voor ‘lenzen’ wordt
vaak gekeken naar sterrenstelsels of clusters van sterrenstelsels, vanwege hun grote massa en
dus makkelijker meetbaar effect. Omdat wij het object dat de lichtstralen uitzond zien in de
richting waar de lichtstralen vandaan leken te komen (zie ook Figuur 1.2), zorgt deze afbui-
ging voor een verplaatsing van objecten aan de hemel. In dit proefschrift beperken we ons tot
zwakke lenswerking, waarbij dit effect zeer subtiel is en slechts statistisch waargenomen kan
worden.

Bij zwakke lenswerking duwt deze subtiele verplaatsing het beeld van een bron in de
achtergrond als het ware iets van het tussenliggende, ‘lenzende’ object vandaan (Figuur 6.1).
Dit effect is logischerwijs het sterkst voor lichtstralen die dicht langs de lens gaan en minder
voor lichtstralen die de lens op grotere afstand passeren. Als we naar objecten kijken die
oorspronkelijk een bepaalde vorm hadden, zoals sterrenstelsels die in de achtergrond liggen,
dan zien we dat het deel van het beeld dat dichter bij de lens ligt daardoor sterker verplaatst
wordt en het deel dat verder van de lens ligt inhaalt: het beeld wordt als het ware iets plat-
gedrukt, waardoor de ellipticiteit van het beeld wordt veranderd. Figuur 6.2 laat zien hoe
deze vervorming aan de hemel een patroon zou kunnen veroorzaken in de ellipticiteiten van
achtergrondbeelden.

De mate van deze vervorming kunnen we direct koppelen aan de massaverdeling van het
lenzende object. Op deze manier kunnen we alle materie, zichtbaar en donker, in principe in
kaart brengen, zonder dat we iets hoeven te weten of aan te nemen over de lens. Gravitationele
lenswerking wordt daarom gezien als onafhankelijke en zeer belangrijke meetmethode voor
het bestuderen van kosmologische modellen. Een beroemd voorbeeld is dat van het bullet
cluster, weergegeven in Figuur 1.3. Het bullet cluster bestaat eigenlijk uit twee clusters,
die met elkaar in botsing zijn gekomen. Hierdoor is het totale systeem duidelijk niet in
evenwicht. Met behulp van Röntgenstraling zijn schokgolven te zien in het hete gas wat deze
clusters meedroegen, maar door de botsing in het midden is achtergebleven (het linkerpaneel
in Figuur 1.3). In het zichtbare licht zien we twee concentraties van sterrenstelsels, die als los
zand door elkaar zijn gevlogen en dus verder van elkaar zijn verwijderd (het rechterpaneel
in Figuur 1.3). Als we ons alleen op deze waarnemingen zouden baseren, zoals de aantallen
sterrenstelsels en de intensiteit van het gas, zouden we de conclusie trekken dat het gas het
grootste deel van de zichtbare massa vertegenwoordigt.

Door een reconstructie van de massaverdeling met behulp van zwakke lenswerking, de
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Figuur 6.1: Een voorbeeld van een lens (het grote sterrenstelsel links) met daarnaast het schematische
beeld van een gelensd sterrenstelsel in de achtergrond (en daarom kleiner weergegeven). Lichtstralen
die dicht langs de lens gaan worden sterker afgebogen dan lichtstralen dan lichtstralen die de lens op
grotere afstand passeren. Hierdoor wordt het ‘binnenste deel’ van het oorspronkelijke (blauwe) beeld
sterker weggeduwd dan het ‘buitenste’ deel. In het waargenomen, “gelensde” (rode) beeld heeft de
binnenkant de buitenkant iets ingehaald, waardoor het beeld enigszins is platgedrukt.

groene contouren in Figuur 1.3, blijkt echter dat de grootste massaconcentraties verder uit
elkaar liggen, niet bij het hete gas, maar juist waar de twee concentraties van sterrenstelsels
zich bevinden. Er blijkt er veel meer materie in het bullet cluster te zijn dan zichtbaar is.
Bovendien vertelt gravitationele lenswerking ons ook waar die materie zich bevindt en hoe
deze tijdens de botsing heeft bewogen.

6.2.2 Metingen en interpretatie

Dat een model van gravitationele lenswerking geen aannamen hoeven te doen over de dy-
namische of astrofysische processen in de lenzende objecten, maakt het op dat punt minder
gevoelig voor bijvoorbeeld model bias. Dit betekent echter niet dat gravitationele lenswer-
king niet haar eigen aannamen en onzekerheden kent. Bijvoorbeeld waar het de selectie en
oorspronkelijke vorm van achtergrondbronnen betreft, maar ook in de statistische berekening
van het effect en de interpretatie van die uitkomsten.

Om de vormen van achtergrondbronnen te meten, zijn zeer nauwkeurige beelden van hoge
kwaliteit nodig. Deze beelden kennen altijd een vervorming door bijvoorbeeld de atmosfeer
en de optica in de telescoop. Deze vervormingen lijken op vervormingen die veroorzaakt
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Figuur 6.2: Een indicatie hoe achtergrondbeelden vervormd kunnen worden door zware objecten tussen
die achtergrond en ons, de waarnemers, in. Links is een theoretische achtergrond te zien, zonder vervor-
mingen. Rechts is geschetst hoe de ellipticiteit en de oriëntatie van die achtergrondbeelden verandert
door gravitationele lenswerking. Bron: NOIRLab/NSF/AURA.

worden door gravitatielenzen en dus moet hier zorgvuldig voor gecorrigeerd worden. Bij-
voorbeeld: als er meerdere beelden worden gecombineerd, kan deze correctie voor de totale
combinatie wel nauwkeurig zijn, maar voor de individuele beelden een afwijking vertonen.
In hoofdstuk 2 en 3 komen we hier in het bijzonder op terug.

Daarnaast moeten er aannamen worden gedaan over de oorspronkelijke vormen van ach-
tergrondstelsels, terwijl we die nooit hebben kunnen meten. Wat dit betreft is gravitationele
lenswerking een schoolvoorbeeld van het indirect waarnemen van een niet zichtbare ‘ware
vorm’. Om deze informatie te achterhalen, gebruiken we zogenaamde basismodellen die we
vervormen en vergelijken met de waarnemingen. De benodigde vervorming is dan het sig-
naal van de gravitationele lenswerking. We zijn dus gevoelig voor een model bias als het de
achtergrondvormen betreft. Om dit zorgvuldig te ijken, vergelijken we in hoofdstuk 3 twee
verschillende benaderingen hiervoor.

Omdat achtergrondbronnen bovendien al een eigen ellipticiteit hebben, combineren we
een groot aantal achtergrondmetingen en nemen we daar het gemiddelde van. Het lenseffect
is dan het netto signaal dat overblijft. Hierbij moeten we wel rekening houden met een
complexe situatie: de combinatie van intrinsieke ellipticiteit en lenswerking is niet-lineair; de
bijkomende meetruis is verschoven ten opzichte van de verdeling van de intrinsieke vormen;
en de resulterende verdeling is asymmetrisch. Hierdoor wijkt dit gemiddelde van de gemeten
vormen iets af van de waarde van de lenswerking, zoals we in hoofdstuk 4 en 5 aantonen.

Dit is hoe statistiek werkt: men voert een berekening uit en vervolgens koppelt men een
betekenis aan de waarde die uit deze berekening volgt. Zelfs als de berekening goed wordt
uitgevoerd, hoeft deze uitkomst niet exact te beschrijven hoe de situatie in elkaar steekt. Deze
statistische bias beïnvloedt vervolgens onze reconstructie van de verdeling van materie aan
de hemel. In hoofdstuk 4 en 5 bestuderen we daarom altenatieve statistische berekeningen,
die dichter bij de waarheid lijken te liggen. In verder onderzoek zal duidelijk moeten worden
of dat inderdaad zo is.
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6.3 Dit proefschrift

Het onderzoek beschreven in dit proefschrift beslaat vier delen, namelijk een theoretische
bespiegeling op de regressiestatistiek in de theorie van zwakke lenswerking en drie afzonder-
lijke analyses van zwakke lenswerking door groepen en clusters van sterrenstelsels, elk met
een focus op bepaalde systematische onzekerheden in de methode.

In hoofdstuk 2 (Smit et al. 2015) voeren we met behulp van zwakke lenswerking een
analyse uit van de zogenaamde “supergroep” SG1120–1202, ook wel een protocluster ge-
noemd (Gonzalez et al. 2005). SG1120–1202 lijkt namelijk te bestaan uit vier relatief lichte
groepen van sterrenstelsels op gemiddeld 10 lichtjaren van elkaar. Voorspellingen tonen aan
dat deze subgroepen over enkele miljarden lichtjaren samen zullen zijn gevoegd tot één groot
cluster, vergelijkbaar met het Coma cluster. Omdat deze supergroep op 3,5 miljard lichtjaar
afstand staat, zien we de ontwikkeling zoals deze 4 miljard jaar geleden was en zou deze
samensmelting tot één cluster al plaats kunnen hebben gevonden.

De omvang van het gehele stelsel is qua onderlinge afstanden te vergelijken met het eer-
der genoemde bullet cluster, maar de subgroepen zijn van lagere massa en vertonen nog geen
interactie. Ook hier is heet gas dat zichtbaar is in Röntgenstraling, maar dit vertoont geen in-
teractie, zoals schokgolven. SG1120–1202 is onderdeel van een reeks onderzoeken, die onder
andere aantonen dat de sterrenstelsels in de subgroepen het grootste deel van hun ontwikke-
ling al hebben doorgemaakt, hetgeen suggereert dat sterrenstelsels het grootste deel van hun
tijd in kleinere groepen doormaken (Tran et al. 2008, 2009). Het vormt dus een unieke kijk
op het ontstaan van structuur op kosmische schaal en toont het belang aan van het bestuderen
van deze groepsfase.

Met behulp van zeer nauwkeurige waarnemingen met de Hubble Space Telescope (HST)
hebben we de ellipticiteiten van achtergrondbronnen bepaald. Met behulp van aanvullende
archiefdata van HST waarnemingen en de methoden uit Schrabback et al. (2010) zijn de
storende vervormingen door onder andere de telescoop zelf nauwkeuriger bepaald, dan met
alleen de gebruikte beelden zelf mogelijk zou zijn geweest. Gezien de onderlinge nabijheid
van de subgroepen, is de gravitationele lenswerking van de supergroep in haar geheel gemo-
delleerd.

Uit het model bleek dat de massaverdeling in SG1120–1202 bijna hetzelfde is als die
van de zichtbare sterrenstelsels en de Röntgenstraling van het hete gas in het protocluster,
wat bevestigt dat de subgroepen nog niet hebben geïnteracteerd. Eén van de subgroepen
ligt ongeveer 100 miljoen lichtjaar dichterbij dan de andere drie en vertoont geen verhoogde
massaconcentratie. Van de andere drie hebben we onafhankelijke massabepalingen gedaan
die eerdere bepalingen met andere methoden bevestigden.

Hoofdstuk 3 vormt een studie naar 79 zeer nabije en zeer lichte groepen van sterrenstel-
sels. Deze groepen zijn gevonden in de Two-degree-Field Galaxy Redshift Survey (Colless
et al. 2001) en onderdeel van de Zürich Environmental Survey (Carollo et al. 2013), een
onderzoek naar de eerder genoemde, belangrijke groepsfase in de ontwikkeling van sterren-
stelsels.

Deze groepen, op slechts 600 miljoen lichtjaar afstand, variëren in massa van zeer licht
(vergelijkbaar met onze eigen Melkweg) tot de (nog steeds lichte) subgroepen van de super-
groep van hoofdstuk 2. Zulke hele lichte structuren zijn tot op de dag van vandaag nog steeds
relatief onderbelicht. Daarnaast kon deze studie een oriëntatie vormen voor wat er met de ge-
plande Kilo-Degree Survey (de Jong et al. 2013) mogelijk zou zijn. Dit is uiteindelijk gedaan
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in Viola et al. (2015), met iets zwaardere groepen, die iets verder weg liggen.
Zowel de nabijheid als de lage massa van deze groepen vertalen zich naar een zeer zwakke

lenswerking. Dit stelt extra hoge eisen aan de beheersing van systematische fouten en de
kwaliteit van de meetmethoden. Een bijkomend effect is dat zulke lichte groepen moeilijker
te vinden zijn, waardoor het niet altijd zeker is dat er een groep is of waar het centrum van de
groep zich bevindt. Een belangrijk aspect is dus de mogelijke definitie van het centrum van
zo’n groep, waarvoor we meerdere opties onderzocht hebben. In dit regime van zeer lichte
groepen zijn onze methoden dus gevoeliger voor een mogelijke bias in de detectie of in de
modellering van de lenzen.

Ook is er uitgebreid gekeken naar de vervormingen door de telescoop en de eerder ge-
noemde effecten van samenvoeging van meerdere opnamen tot één beeld. Tenslotte hebben
we twee methoden vergeleken om de vormen van de achtergrondbronnen te meten. De eer-
ste methode gebruikt het meten van de helderheidsverdeling van de bronnen (KSB+, zoals
beschreven in Erben et al. 2001). De andere methode vergelijkt de beelden van achtergrond-
bronnen met een zeer flexibele set modellen (Shapelets, zoals beschreven in Kuijken 2006).

De resultaten bleken goed met elkaar in overeenstemming. Hierdoor bleek het mogelijk
om significante schattingen te maken van verschillende aspecten van de massa’s van deze
groepen. Deze bleken in goede overeenstemming met onder andere schattingen gebaseerd op
de interne snelheden van de groepen. Die schattingen waren dus verkregen door het gebruik
van eerder genoemde dynamische modellen. In het regime van (zeer) lage waarden zijn twee
onafhankelijke methoden zeer belangrijk.

Hoofdstuk 4 (Smit & Kuijken 2018) is het eerste deel van een tweeluik over de statis-
tische methoden die gebruikt worden voor regressie. Het welbekende gewogen gemiddelde
werkt het best bij metingen waarvan de foutenverdelingen zich enigszins regelmatig gedra-
gen, in het bijzonder de normale of Gaussische verdeling. Belangrijk is dat er niet een te
groot aantal relatieve uitschieters in de afwijkingen voorkomt en bovendien dat die afwijkin-
gen redelijk symmetrisch zijn verdeeld.

De natuurlijke verdeling van ellipticiteiten van sterrenstelsels vertoont een scherpe cen-
trale piek, waar de meeste informatie te vinden is. Een methode die minder afhankelijk is van
grote afwijkingen en meer van die centrale piek ligt dan voor de hand.

Daarnaast is het effect van lenswerking op die natuurlijke verdeling niet lineair en is de
verdeling van meetfouten afwijkend. Dat zorgt voor een asymmetrie in de gemeten verdeling
van ellipticiteiten die tot een afwijking – een statistische bias – van enkele procenten kan
leiden in een gewogen gemiddelde, ten opzichte van de ware positie van de piek.

We bekijken enkele andere regressiemethoden, waarvan de belangrijkste twee de me-
thoden van Kleinste Absolute Afwijking (Least Absolute Deviations of LAD) en Convexe
Omhulling (Convex Hull Peeling of CHP) zijn. Beiden leiden in het eendimensionale geval
tot de mediaan en zijn veel minder gevoelig voor sterk afwijkende waarden.

Deze regressiemethoden hebben we getest op verschillende simulaties van ellipticiteiten,
die we optimaal konden aanpassen, en op de verdeling van gemeten ellipticiteiten in de cata-
logus van de Canada-France-Hawaii Lensing Survey (Heymans et al. 2012b). Daarbij hebben
we gekeken naar de bias van de statistische methode, maar ook naar de betrouwbaarheid.

Uit ons onderzoek kwam naar voren dat de bias van CHP in theorie de kleinste kan zijn,
maar dat LAD de meest betrouwbare verbetering oplevert ten opzichte van het gewogen ge-
middelde, door een makkelijkere toepasbaarheid en stabielere uitkomsten.

In hoofdstuk 5 (Smit et al. 2021) passen we de resultaten van hoofdstuk 4 toe. Hier-
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voor gebruiken we nauwkeurige metingen van meer dan 10 miljoen achtergrondbronnen in
450 vierkante graden van KiDS. Als beoogde lenzen gebruiken we bijna 7000 tussenliggende
clusters van sterrenstelsels, gevonden met de Adaptive Matched Identifier of Clustered Ob-
jects (AMICO, Bellagamba et al. 2018) in de KiDS waarnemingen.

Door de hoge kwaliteit en aantallen konden we het signaal nauwkeurig genoeg vaststel-
len, om het verschil van enkele procenten tussen het gewogen gemiddelde en LAD duidelijk
zichtbaar te maken. In het bepalen van de verdeling van de dichtheid in de clusters kwam dit
verschil het meest duidelijk naar voren. Dit hebben we vertaald naar het effect op de relatie
tussen lichtkracht en massa van clusters van sterrenstelsels.

Ook in deze toepassing bleek LAD een iets hoger signaal te geven, met bovendien klei-
nere onzekerheden in de gevonden waarden.
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“A hero is someone who simply got too frightened to use his good sense and run away, then
somehow lived through it all.”

– Raymond E. Feist, Silverthorn

This is the part where I get to talk about myself, the good, the bad and the beautiful. I
realize hardly anyone will read this part, and I have taken the liberty in using the writing of
it – with a cup of coffee and a wee dram of whisky – as a summarizing reflection on my life,
as far as it pertains to my professional career of course, but – inescapably intertwined – also
to the scientist and the person I have become.

I was born in Haarlem, The Netherlands, on the 7th of September in 1977. I suspect that
– in a way, even at that age – I was already easily distracted and momentarily lost sight of
the tasks right in front of me, as I stopped breathing right away. However, be it curiosity or
stubbornness, I eventually got back to it and to this day, I still foster a passion for it, akin to
that for astronomy.

For as long as I can remember, I enjoy understanding. And then imagining the alternative
possibilities. As soon as I could read, I was hooked and essentially didn’t put the books down,
until well within adulthood. During my years in primary school, I was more than a handful.
As soon as I understood something, my mind had already wandered down several other paths.
It’s not that school didn’t interest me. It did. I wanted to understand everything in school.
Yet I also wanted to understand, experience, explore and imagine a lot of other things as well
and I simply didn’t have time to dawdle, doing the same old exercises.

When hiking through the heathlands in Drenthe, on the Veluwe or the mountains in
France, I was fascinated by maps and the explanations of my father, a teacher of geography
and mathematics, about how and why the world was ordered as it was. I remember picking
my mother’s and father’s brain about the differences between religions and, during the same
summer holiday evenings, I kept asking for another challenge in determining the square root
of a non integer number. I was swept away by the 3D shows in the then newly opened Om-
niversum, when my grandmother took me there. To this day I remember the shows about
astronomy, the physics behind airplanes and dizzying and exhilarating journeys over strange
landscapes or through the depths of the oceans. She even gave me a booklet called ‘Welke
ster is dat?’ by W. Widmann, full of charts and constellations for each time of the year. I
already had my own simple camera, and being allowed to use my father’s Canon SLR on rare
occasions was a treat. Unhindered by any talent for the sport, I still managed to make it to the
first soccer team of the school through stubbornness and running around a lot, and boy was
I proud when we won the local championship and entered the regional school championship
for the first time in years.

My high school years I attended College Hageveld in Heemstede. It is the only categorical
athenaeum in The Netherlands, though I still had the opportunity to submerse myself in the
classics, culminating in visiting Rome on a school trip and graduating in Latin besides Dutch,
English, German, mathematics, physics, chemistry and biology. I wanted to take French,
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geography and history as well, but the system wasn’t flexible enough at the time. Hageveld
was also a place that fostered creativity and curiosity, and I explored my first steps on stage,
in writing and in music.

After extensive orienting visits to various universities all over the country, seriously con-
templating philosophy, veterinary medicine, electrical or aerospace engineering, the choice
for astronomy felt in hindsight as not just logical, but inevitable. I finally enjoyed a true chal-
lenge, as the sky was not the limit, but merely the start. The bigger the challenge, the stronger
my interest, the higher my grades. The master courses in general relativity and gravitation,
differential equations, cosmology and philosophy of science were among the highlights, some
of which were the last to be taught in the classic Kamerlingh Onnes building. I also had my
first taste of teaching, as I related to the struggles of students in the years below me and shared
my experiences and insights gleaned during my own similar struggles. Not just sharing the
knowledge, but how to change a way of thinking, how to learn. I did a minor thesis with
Dr. Peter Katgert on cosmology, focusing on quintessence versus a cosmological constant.
My master thesis about galactic bars in edge-on galaxies with boxy bulges, a case study of
IC2531, was done under supervision of Prof. dr. Tim de Zeeuw and Dr. Martin Bureau.

Of course, besides also still devouring books, my interests still wandered all over the
place, and I immersed myself in tabletop games and the first variants of online games, not
only playing, but also developing and writing them. With a group of close friends, we visited
the cinema at least once a week and of course several editions of the Leiden Movie Festival.
I assisted the astronomy association Kaiser with a few activities over the years and partici-
pated in the trip to Northern France to see the solar eclipse of 1999 in Noyon. I joined SKC,
the student volleyball club, and over the course of ten years, worked my way from the low-
est to the first team, became a licensed referee and joined several committees, such as the
social activities committee, the lustrum committee, the bar committee and the monthly club
magazine.

Most importantly, I actively participated in De Leidsche Flesch, the student association
for physics, astronomy, mathematics and computer science. Besides joining committees for
first year students, the yearly almanac, movie nights and games, among others, I spent a year
as president. At the time, member engagement was very low and some people wondered if
the association still had a purpose, a future. With a fantastic board and a group of creative
and enthusiastic first year students, we watched the association bloom with renewed social
and scientific activities, planting during this year many seeds that would come to fruition
in following years, like the yearly student trip abroad. It was an impressive and privileged
experience to be at the front row during that change.

It will come as no surprise that at some point, my studies were taking quite a long time.
A student has to eat, and I decided that after my unofficial experiences with teaching, I could
dabble in the real thing. It turned out that I could all too well, and before I realized, I had
three years experience in teaching almost full time in high school, at a sublocation of the
Carmelcollege in Gouda. With the support at home and of Prof. dr. de Zeeuw, I quit a steady
income to return home to astronomy – at least that’s how it felt.

Fueled by the feeling that I had returned where I belonged, I finished my masters de-
gree. Over the summer, I did a short research project with Dr. Richard McDermid on M32
using Oasis data in my spare time. At the same time, I applied for a PhD position with
Prof. Dr. Koen Kuijken to work on weak gravitational lensing with the Kilo-Degree Survey
and was ecstatic when I was accepted. In expectation of the start of KiDS, I started work-
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ing on Wide-Field Imager data of nearby galaxy groups found in the 2-degree Field Galaxy
Redshift Survey and observations on galaxy supergroup SG1120–1202 from the Advanced
Camera for Surveys on the Hubble Space Telescope. As part of the growing lensing group in
Leiden, I had the privilege to take part in the ‘Dark side of the Universe through Extragalac-
tic Lensing’ (DUEL) European training network and the collaborations on Canada-France-
Hawaii Legacy Survey data, evolving in name and composition from CFHT-CARS, through
CFHTLS Systematics to the final CFHT Lensing Survey (CFHTLenS). I attended summer
schools and workshops on statistics at Penn State, USA; astronomical image processing in
Dubrovnik, Croatia; AstroWISE in Leiden, The Netherlands. I participated in scientific meet-
ings, presented my work and gave talks and colloquia in Leiden, Ameland, and Veldhoven,
The Netherlands; State College, USA; Santiago, Chile; London, and Edinburgh, UK; Paris,
France; Sydney, Australia; Victoria, Canada.

At the same time, I assisted several years with the courses Introductory Astrophysics and
Special Relativity. I was active for several consecutive years in the institute social committee
(as chair), the computer committee and the institute council. During the same years, I worked
on public outreach and gave popular lectures in, among others, Amsterdam, Leiden, Alkmaar,
Hoorn, and Wormer.

During the full second year and part of the third year of my PhD, I went through a divorce
that ended a six year relationship. Pursuing many interests and passions at the same time had
been a characteristic of my life and that provided escape in many different directions at once.
My journey made the softest landing possible, when I soon after met my wife and love of my
life, but this newfound happiness occupied my attention more than the tumbleweeds blowing
through the silent landscape of my PhD.

Finding strength and encouragement in each other, I returned to astronomy once more,
but without funding. With savings, I could bridge a gap of several months, but to support
myself, I needed to return to my secondary passion: teaching. Continuing my PhD one day
per week, I completed my masters degrees in eduction of both mathematics and physics, cum
laude. Since then, I have been teaching in high school for ten years, developing an inter-
est and indeed an opinion on teacher education. I am a certified and registered video coach
and have participated with great interest in working collaborations on the subjects of educa-
tion of mathematics and statistics within the Dutch Association of Teachers in Mathematics
(NVvW).

This has been a long reflection, but then, I am now finishing my PhD at the age of 44. I
still feel that I am where I belong, and am currently living in the most important time of my
life, whatever dreams and passions may lie ahead.

“Wisdom comes from experience. Experience is often a result of lack of wisdom.”

– Terry Pratchett
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